Issues

 / 

2018

 / 

September

  

Reviews of topical problems


Excitons and trions in two-dimensional semiconductors based on transition metal dichalcogenides

,
Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation

Theoretical and experimental results on excitonic effects in monomolecular layers of transition metal dichalcogenides are reviewed. These two-dimensional semiconductors exhibit a direct band gap of about 2 eV at the Brillouin zone edges, and the binding energies of their neutral and charged excitons are in the range of hundreds and tens of millielectronvolts, respectively. This implies that the electron-hole complexes determine the optical properties of transition metal dichalcogenide monolayers. Topics discussed in this review include the band structure details needed to understand the excitonic effects in these materials, the structure and fine structure of excitons and trions, the features of the spin and valley dynamics of Coulomb complexes, and the ways how neutral and charged excitons manifest themselves in linear and nonlinear optical effects.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.07.038172
Keywords: transition metal dichalcogenides monolayers, Coulomb interaction, exchange interaction, exciton, trion, spin dynamics, valley dynamics, optical orientation, two-photon absorption, second harmonic generation, Zeeman effect
PACS: 71.35.−y, 73.20.Mf, 78.67.−n (all)
DOI: 10.3367/UFNe.2017.07.038172
URL: https://ufn.ru/en/articles/2018/9/a/
000452480000001
2-s2.0-85058448965
2018PhyU...61..825D
Citation: Durnev M V, Glazov M M "Excitons and trions in two-dimensional semiconductors based on transition metal dichalcogenides" Phys. Usp. 61 825–845 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 4th, July 2017, revised: 14th, July 2017, 14th, July 2017

Îðèãèíàë: Äóðíåâ Ì Â, Ãëàçîâ Ì Ì «Ýêñèòîíû è òðèîíû â äâóìåðíûõ ïîëóïðîâîäíèêàõ íà îñíîâå äèõàëüêîãåíèäîâ ïåðåõîäíûõ ìåòàëëîâ» ÓÔÍ 188 913–934 (2018); DOI: 10.3367/UFNr.2017.07.038172

References (159) Cited by (52) ↓ Similar articles (20)

  1. Kezerashvili R Ya, Tsiklauri Sh M, Dublin A Phys. Rev. B 109 (8) (2024)
  2. Mughnetsyan V, Manaselyan A et al Semicond. Sci. Technol. 39 045016 (2024)
  3. Semina M A, Mamedov Ja V, Glazov M M 3 (1) (2023)
  4. Shubina T V, Galimov A I et al Bull. Russ. Acad. Sci. Phys. 87 S52 (2023)
  5. Demeridou I, Mavrotsoupakis E G et al 2D Mater. 10 025023 (2023)
  6. Putnam R E, Raikh M E Solid State Communications 341 114543 (2022)
  7. Semina M A, Suris R A Phys.-Usp. 65 111 (2022)
  8. Kapil B, Sharma Sh et al Eur. Phys. J. Plus 137 (7) (2022)
  9. Chang Ya-W, Chang Y-Ch 157 (4) (2022)
  10. Smirnov D S, Holler J et al 2D Mater. 9 045016 (2022)
  11. Glazov M M, Iakovlev Z A, Refaely-Abramson S 121 (19) (2022)
  12. Burmistrov I  S, Kachorovskii V  Yu et al Phys. Rev. Lett. 128 (9) (2022)
  13. Parfenov M V, Kachorovskii V Yu, Burmistrov I S Phys. Rev. B 106 (23) (2022)
  14. Lindoy L P, Chang Ya-W, Reichman D R Phys. Rev. B 106 (23) (2022)
  15. Gabovich A M, Li M S et al Phys. Rev. B 105 (11) (2022)
  16. Zhao Q, Zhou W-J et al J. Phys. D: Appl. Phys. 55 203002 (2022)
  17. Glazov M M, Dirnberger F et al Phys. Rev. B 106 (12) (2022)
  18. Chang Ya-W, Chang Y-Ch 155 (2) (2021)
  19. Pekh P L, Ratnikov P V, Silin A P J. Exp. Theor. Phys. 133 494 (2021)
  20. Smirnov D S Phys. Rev. B 104 (24) (2021)
  21. Prazdnichnykh A I, Glazov M M et al Phys. Rev. B 103 (8) (2021)
  22. Glazov M M, Ivchenko E L Jetp Lett. 113 7 (2021)
  23. Eliseyev I A, Galimov A I et al Physica Rapid Research Ltrs 15 (10) (2021)
  24. Leppenen N V, Golub L E, Ivchenko E L Phys. Rev. B 103 (23) (2021)
  25. Mahmoodian M M, Chaplik A V Jetp Lett. 114 545 (2021)
  26. Efimkin D K, Laird E K et al Phys. Rev. B 103 (7) (2021)
  27. Eroshenko Yu N Uspekhi Fizicheskikh Nauk 191 904 (2021) [Eroshenko Yu N Phys.-Usp. 64 858 (2021)]
  28. Eroshenko Yu N Uspekhi Fizicheskikh Nauk 191 904 (2021) [Eroshenko Yu N Phys.-Usp. 64 106 (2021)]
  29. Kotova L V, Rakhlin M V et al Nanoscale 13 17566 (2021)
  30. Quintela M F C M, Henriques J C G, Peres N M R Phys. Rev. B 104 (20) (2021)
  31. Akmaev M A, Glazov M M et al 119 (11) (2021)
  32. Kudlis A, Iorsh I Phys. Rev. B 103 (11) (2021)
  33. Eroshenko Yu N Uspekhi Fizicheskikh Nauk 191 110 (2021)
  34. Liu H, Pau A, Efimkin D K Phys. Rev. B 104 (16) (2021)
  35. Glazov M M 153 (3) (2020)
  36. Pekh P L, Ratnikov P V, Silin A P Jetp Lett. 111 90 (2020)
  37. Leppenen N V, Golub L E, Ivchenko E L Phys. Rev. B 102 (15) (2020)
  38. Smirnova O O, Eliseyev I A et al J. Phys.: Conf. Ser. 1482 012038 (2020)
  39. Martins Q M F C, Peres N M R Eur. Phys. J. B 93 (12) (2020)
  40. Zipfel J, Wagner K et al 153 (3) (2020)
  41. Kotova L V, Platonov A V et al Semiconductors 54 1509 (2020)
  42. Ratnikov P V Phys. Rev. B 102 (8) (2020)
  43. Munkhbat B, Baranov D G et al ACS Nano 14 1196 (2020)
  44. (INTERNATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF COMBUSTION AND PROCESSES IN EXTREME ENVIRONMENTS (COMPHYSCHEM’20-21) and VI INTERNATIONAL SUMMER SCHOOL “MODERN QUANTUM CHEMISTRY METHODS IN APPLICATIONS”) Vol. INTERNATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF COMBUSTION AND PROCESSES IN EXTREME ENVIRONMENTS (COMPHYSCHEM’20-21) and VI INTERNATIONAL SUMMER SCHOOL “MODERN QUANTUM CHEMISTRY METHODS IN APPLICATIONS”Many-body phenomena in semiconductors and cluster expansion approachAndreyKudlisGulnazRakhmanovaIvanIorsh2304 (2020) p. 020072
  45. Chernozatonskii L A, Kvashnin D G Nanotechnology 31 115203 (2020)
  46. 374 (2019)
  47. Gabovich A M, Voitenko A I Condensed Matter 4 44 (2019)
  48. Avdeev I D, Smirnov D S Nanoscale Adv. 1 2624 (2019)
  49. Chang Ya-W, Reichman D R Phys. Rev. B 99 (12) (2019)
  50. Glazov M M, Semina M A et al Phys. Rev. B 100 (4) (2019)
  51. Glazov M M Phys. Rev. B 100 (4) (2019)
  52. Semina M A Phys. Solid State 61 2218 (2019)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions