Methodological notes

On the relation between Stokes drift and the Gerstner wave

 a,  b
a National Research University Higher School of Economics, Nizhny Novgorod Branch, B. Pecherskaya str. 25/12, Nizhny Novgorod, 603155, Russian Federation
b Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

This paper discusses the properties of two-dimensional, nonlinear, potential and vortex waves on the surface of an ideal liquid of infinite depth. It is shown that to quadratic order in the amplitude, the vorticity of the Gerstner wave is equal in magnitude and different in sign to that of the Stokes drift current in a surface layer. This allows a classic Stokes wave obtained in the framework of potential theory to be interpreted as a superposition of the Gerstner wave and Stokes drift. It is proposed that the nonlinearity coefficient in the nonlinear Shrödinger equation can be physically interpreted as the Doppler frequency shift over the vertically averaged Stokes drift current.

Fulltext pdf (511 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.03.038089
Keywords: waves on the water, vorticity, Stokes drift, Gerstner wave, nonlinear Shrödinger equation
PACS: 47.35.Bb
DOI: 10.3367/UFNe.2017.03.038089
Citation: Abrashkin A A, Pelinovsky E N "On the relation between Stokes drift and the Gerstner wave" Phys. Usp. 61 307–312 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, February 2017, 9th, March 2017

Оригинал: Абрашкин А А, Пелиновский Е Н «О связи дрейфа Стокса и волны Герстнера» УФН 188 329–334 (2018); DOI: 10.3367/UFNr.2017.03.038089

References (23) Cited by (4) Similar articles (17) ↓

  1. A.A. Abrashkin, E.N. Pelinovsky “Gerstner waves and their generalizations in hydrodynamics and geophysics65 453–467 (2022)
  2. D.S. Agafontsev, E.A. Kuznetsov et alCompressible vortex structures and their role in the onset of hydrodynamic turbulence65 189–208 (2022)
  3. P.N. Svirkunov, M.V. Kalashnik “Phase patterns of dispersive waves from moving localized sources57 80–91 (2014)
  4. A.G. Zagorodnii, A.V. Kirichok, V.M. Kuklin “One-dimensional modulational instability models of intense Langmuir plasma oscillations using the Silin—Zakharov equations59 669–688 (2016)
  5. V.M. Rozenbaum, I.V. Shapochkina, L.I. Trakhtenberg “Green's function method in the theory of Brownian motors62 496–509 (2019)
  6. V.I. Alshits, E.V. Darinskaya et alDislocation kinetics in nonmagnetic crystals: a look through a magnetic window60 305–318 (2017)
  7. Yu.Kh. Vekilov, O.M. Krasil’nikov, A.V. Lugovskoy “Elastic properties of solids at high pressure58 1106–1114 (2015)
  8. S.P. Efimov “Coordinate space modification of Fock's theory. Harmonic tensors in the quantum Coulomb problem65 952–967 (2022)
  9. A.V. Shchagin “Fresnel coefficients for parametric X-ray (Cherenkov) radiation58 819–827 (2015)
  10. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitter57 1022–1034 (2014)
  11. A.V. Kukushkin, A.A. Rukhadze, K.Z. Rukhadze “On the existence conditions for a fast surface wave55 1124–1133 (2012)
  12. P.S. Landa, D.I. Trubetskov, V.A. Gusev “Delusions versus reality in some physics problems: theory and experiment52 235–255 (2009)
  13. V.F. Kovalev, D.V. Shirkov “Renormalization-group symmetries for solutions of nonlinear boundary value problems51 815–830 (2008)
  14. B.N. Shvilkin “On measuring the Debye radius in an unstable gas discharge plasma41 509–510 (1998)
  15. V.V. Mityugov “The tree of paradox36 (8) 744–753 (1993)
  16. A.A. Logunov, Yu.V. Chugreev “Special theory of relativity and the Sagnac effect31 861–864 (1988)
  17. H. Paul, R. Fischer “Light absorption by a dipole26 923–926 (1983)

The list is formed automatically.

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions