Issues

 / 

2018

 / 

March

  

Methodological notes


On the relation between Stokes drift and the Gerstner wave

 a,  b
a National Research University Higher School of Economics, Nizhny Novgorod Branch, B. Pecherskaya str. 25/12, Nizhny Novgorod, 603155, Russian Federation
b Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

This paper discusses the properties of two-dimensional, nonlinear, potential and vortex waves on the surface of an ideal liquid of infinite depth. It is shown that to quadratic order in the amplitude, the vorticity of the Gerstner wave is equal in magnitude and different in sign to that of the Stokes drift current in a surface layer. This allows a classic Stokes wave obtained in the framework of potential theory to be interpreted as a superposition of the Gerstner wave and Stokes drift. It is proposed that the nonlinearity coefficient in the nonlinear Shrödinger equation can be physically interpreted as the Doppler frequency shift over the vertically averaged Stokes drift current.

Fulltext pdf (511 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.03.038089
Keywords: waves on the water, vorticity, Stokes drift, Gerstner wave, nonlinear Shrödinger equation
PACS: 47.35.Bb
DOI: 10.3367/UFNe.2017.03.038089
URL: https://ufn.ru/en/articles/2018/3/f/
000435395400006
2-s2.0-85048380519
2018PhyU...61..307A
Citation: Abrashkin A A, Pelinovsky E N "On the relation between Stokes drift and the Gerstner wave" Phys. Usp. 61 307–312 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, February 2017, 9th, March 2017

Оригинал: Абрашкин А А, Пелиновский Е Н «О связи дрейфа Стокса и волны Герстнера» УФН 188 329–334 (2018); DOI: 10.3367/UFNr.2017.03.038089

References (23) ↓ Cited by (7) Similar articles (18)

  1. Gerstner F J Teorie Der Wellen (Prague: Gottlieb Haase, 1804); Gerstner F J Ann. Physik 32 412 (1809)
  2. Lamb H Hydrodynamics (Cambridge: Cambridge Univ. Press, 1932); Per. na russk. yaz., Lamb G Gidrodinamika (M.-L.: Gostekhizdat, 1947)
  3. Kochin N E, Kibel’ I A, Roze N V Teoreticheskaya Gidromekhanika Vol. 1 (M.: Fizmatgiz, 1963); Per. na angl. yaz., Kochin N E, Kibel’ I A, Roze N V Theoretical Hydromechanics (New York: Interscience Publ., 1964)
  4. Stokes G G Trans. Cambridge Phil. Soc. 8 441 (1847); Stokes G G Mathematics And Physics Papers Vol. 1 (Cambridge: Cambridge Univ. Press, 1880) p. 197
  5. Zakharov V E Zhurn. Priklad. Mekh. Tekh. Fiz. 9 (2) 86 (1968); Zakharov V E J. Appl. Mech. Tech. Phys. 9 190 (1968)
  6. Benney D J, Newell A C J. Math. Phys. 46 133 (1968)
  7. Zakharov V E, Manakov S V, Novikov S P, Pitaevskii L P Teoriya Solitonov: Metod Obratnoi Zadachi (M.: Nauka, 1980); Per. na angl. yaz., Novikov S, Manakov S V, Pitaevskii L P, Zakharov V E Theory Of Solitons. The Inverse Scattering Methods (Contemporary Soviet Mathematics) (New York: Consultants Bureau, 1984)
  8. Zakharov V E, Kuznetsov E A Usp. Fiz. Nauk 182 569 (2012); Zakharov V E, Kuznetsov E A Phys. Usp. 55 535 (2012)
  9. Whitham G B Linear And Nonlinear Waves (New York: Wiley, 1974); Per. na russk. yaz., Uizem Dzh Lineinye i Nelineinye Volny (M.: Mir, 1977)
  10. Landau L D, Lifshits E M Gidrodinamika (M.: Nauka, 1986); Per. na angl. yaz., Landau L D, Lifshitz E M Fluid Mechanics (Oxford: Pergamon Press, 1987)
  11. Karpman V I Nelineinye Volny v Dispergiruyushchikh Sredakh (M.: Nauka, 1973); Per. na angl. yaz., Karpman V I Non-linear Waves In Dispersive Media (Oxford: Pergamon Press, 1975)
  12. Phillips O M The Dynamics Of The Upper Ocean (Cambridge: Cambridge Univ. Press, 1977); Per. na russk. yaz., Fillips O M Dinamika Verkhnego Sloya Okeana (L.: Gidrometeoizdat, 1980)
  13. Sretenskii L N Teoriya Volnovykh Dvizhenii Zhidkosti (M.: Nauka, 1977)
  14. Abrashkin A A, Yakubovich E I Vikhrevaya Dinamika v Lagranzhevom Opisanii (M.: Fizmatlit, 2006)
  15. Clamond D J. Fluid Mech. 589 433 (2007)
  16. Zakharov V E, Kuznetsov E A Usp. Fiz. Nauk 167 1137 (1997); Zakharov V E, Kuznetsov E A Phys. Usp. 40 1087 (1997)
  17. Hasimoto H, Ono H J. Phys. Soc. Jpn. 33 805 (1972)
  18. Davey A J. Fluid Mech. 53 769 (1972)
  19. Yuen H C, Lake B M Phys. Fluids 18 956 (1975)
  20. Kadomtsev B B, Karpman V I Usp. Fiz. Nauk 103 193 (1971); Kadomtsev B B, Karpman V I Sov. Phys. Usp. 14 40 (1971)
  21. Yuen H C, Lake B M Advances In Applied Mechanics Vol. 22 (Ed. C-S Yih) (Amsterdam: Elsevier, 1982) p. 67
  22. Zeitunyan R Kh Usp. Fiz. Nauk 165 1403 (1995); Zeytounian R Kh Phys. Usp. 38 1333 (1995)
  23. Rabinovich M I, Trubetskov D I Vvedenie v Teoriyu Kolebanii i Voln (M.: Nauka, 1984); Per. na angl. yaz., Rabinovich M I, Trubetskov D I Oscillations And Waves In Linear And Nonlinear Systems (Dordrecht: Kluwer Acad. Publ., 1989)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions