Issues

 / 

2018

 / 

November

  

Reviews of topical problems


Nonequilibrium kinetics of the electron—phonon subsystem can give rise to electric- and magnetic-plasticity effects in crystals in alternating electric and/or magnetic fields

 a, b,  a
a National Scientific Centre ‘Kharkov Physicotechnical Institute’, ul. Akademicheskaya 1, Kharkov, 310108, Ukraine
b V.N. Karazin Khar'kov National University, pl. Svobody 4, Khar'kov, 61077, Ukraine

Kinetic processes in magnetic crystals in a changing magnetic field and/or a pulsed electric field are studied theoretically, experimentally and numerically to establish the mechanisms by which they influence the structure and the mechanical, dissipative and magnetic characteristics of crystals. The specific materials studied are highly deformed ferrite pearlite steel 15Kh2NMFA and nickel. The paper presents a systematic kinetic analysis of the nonequilibrium dynamics of the electron—phonon subsystem of a magnetic crystal in an electric field. Our proposed method that underlies the analysis solves the system of Boltzmann equations for the electron and phonon distribution functions numerically without expanding the electron distribution function in a power series of the phonon energy. It is shown that the electronic subsystem excited by the electric field transfers energy to the phonon subsystem and thereby massively produces short-wave phonons which act strongly on lattice defects (such as point and linear ones and phase boundaries) and thus redistribute and decrease their density as well as eliminating damage, decreasing local peak stresses and reducing the degradation of structural properties. It is found that under the action of the induction electric field, the electron distribution function becomes nonequilibrium near the Fermi energy and, as a result of electron—phonon collisions, transfers significant energy to the phonon subsystem, resulting in a nonequilibrium phonon distribution function. Based on modified Granato—Lucke's and Landau—Gofman's models, it is shown, using the calculated phonon distribution function, that the effect of phonons on dislocations is much stronger than it would be in the case of thermodynamic equilibrium at the experimentally measured sample temperature of 12 K.

Fulltext pdf (1.5 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.06.038350
Keywords: metals, physical-mechanical properties, alternating magnetic field, creep rate, ferromagnetic crystal, electron—phonon subsystem, dislocation mobility, nonequilibrium kinetics, magnetoplastic effect, electroplastic effect
PACS: 61.72.Ff, 61.72.Hh, 62.20.Hg, 63.20.kd, 63.20.kp, 75.80.+q, 83.60.Np (all)
DOI: 10.3367/UFNe.2018.06.038350
URL: https://ufn.ru/en/articles/2018/11/b/
000457154900002
2-s2.0-85062268784
2018PhyU...61.1051K
Citation: Karas’ V I, Sokolenko V I "Nonequilibrium kinetics of the electron—phonon subsystem can give rise to electric- and magnetic-plasticity effects in crystals in alternating electric and/or magnetic fields" Phys. Usp. 61 1051–1071 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 9th, August 2017, revised: 1st, May 2018, 6th, June 2018

Оригинал: Карась В И, Соколенко В И «Неравновесная кинетика электрон-фононной подсистемы кристалла при действии переменных электрических и магнитных полей как основа электро- и магнитопластического эффектов» УФН 188 1155–1177 (2018); DOI: 10.3367/UFNr.2018.06.038350

References (78) ↓ Cited by (7) Similar articles (20)

  1. Hayashi S, Takahashi S, Yamamoto M J. Phys. Soc. Jpn. 25 910 (1968)
  2. Gindin I A, Lavrinenko I S, Neklyudov I M Pis’ma ZhETF 16 341 (1972); Gindin I A, Lavrinenko I S, Neklyudov I M JETP Lett. 16 241 (1972)
  3. Troitskii O A, Likhtman V I Dokl. Akad. Nauk SSSR 148 332 (1963); Troitskii O A, Likhtman V I Sov. Phys. Dokl. 8 91 (1963)
  4. Gromov V E, Tsellermaier V Ya, Bazaikin V I Elektrostimulirovannoe Volochenie: Analiz Protsessa i Mikrostruktura (M.: Nedra, 1996)
  5. Spitsyn V I, Troitskii O A Elektroplasticheskaya Deformatsiya Metallov (M.: Nauka, 1985)
  6. Troitskii O A i dr Fizicheskie Osnovy Obrabotki Sovremennykh Materialov (teoriya, Tekhnologiya, Struktura i Svoistva) Vol. 1 (M. - Izhevsk: Iz-vo In-ta komp’yut. isled., 2004)
  7. Neklyudov I M, Starodubov Ya D, Sokolenko V I Ukr. Fiz. Zhurn. 50 (8A) A113 (2005)
  8. Neklyudov I M i dr Fizika Khimiya Obrabotki Materialov (1) 84 (2011)
  9. Vasil’ev M A Uspekhi Fiziki Metallov 8 (1) 65 (2007)
  10. Sokolenko V I et al J. Low Temp. Phys. 41 399 (2015)
  11. Neklyudov I M i dr Trudy 18-i Mezhdunarod. konf. po fizike radiatsionnykh yavlenii i radiatsionnomu materialovedeniyu (Khar’kov: NNTs KhFTI, 2008) p. 156
  12. Al’shits V I i dr Usp. Fiz. Nauk 187 327 (2017); Alshits V I et al Phys. Usp. 60 305 (2017)
  13. Trefilov V I i dr Deformatsionnoe Uprochnenie i Razrushenie Polikristallicheskikh Metallov (Kiev: Naukova dumka, 1989)
  14. Krainyuk E A i dr Voprosy Atomnoi Nauki Tekhniki. Ser. Fizika Radiatsionnykh Povrezhdenii Radiatsionnoe Materialovedenie (3) 165 (2004)
  15. Neklyudov I M, Sokolenko V I, Tkachenko V I Trudy 9-i mezhdunarodnoi konferentsii "Fizicheskie yavleniya v tverdykh telakh" p. 93
  16. Sosin A, Kifer D V Mikroplastichnost’ (M.: Metallurgiya, 1972) p. 130
  17. Mitsek A I, Pushkar’ V N Real’nye Kristally s Magnitnym Poryadkom (Kiev: Naukova dumka, 1978)
  18. Dubinko V I i dr Voprosy Atomnoi Nauki Tekhniki. Ser. Fizika Radiatsionnykh Povrezhdenii Radiatsionnoe Materialovedenie (4-2) 158 (2009)
  19. Zakharov V E, Karas’ V I Usp. Fiz. Nauk 183 55 (2013); Zakharov V E, Karas’ V I Phys. Usp. 56 49 (2013)
  20. Zakharov V E Osnovy Fiziki Plazmy Vol. 2 (Pod red. A A Galeeva, R Sudana) (M: Energoatomizdat, 1984) p. 48; Zakharov V E Basic Plasma Physics Vol. 2 (Eds A A Galeev, R N Sudan) (Amsterdam: North-Holland, 1984) p. 3
  21. Zakharov V E Zhurn. Priklad. Mekh. Tekh. Fiz. (4) 35 (1965); Zakharov V E J. Appl. Mech. Tech. Phys. 6 (4) 22 (1965)
  22. Zakharov V E, Filonenko N N Dokl. Akad. Nauk SSSR 170 1292 (1966); Zakharov V E, Filonenko N N Sov. Phys. Dokl. 11 881 (1967)
  23. Zakharov V E, Filonenko N N Zhurn. Priklad. Mekh. Tekh. Fiz. (5) 62 (1967); Zakharov V E, Filonenko N N J. Appl. Mech. Tech. Phys. 8 (5) 37 (1967)
  24. Zakharov V E Zh. Eksp. Teor. Fiz. 51 688 (1966); Zakharov V E Sov. Phys. JETP 24 740 (1967)
  25. Zakharov V E, Sagdeev R Z Dokl. Akad. Nauk SSSR 192 297 (1970); Zakharov V E, Sagdeev R Z Sov. Phys. Dokl. 15 439 (1970)
  26. Zakharov V, Dias F, Pushkarev A Phys. Rep. 398 1 (2004)
  27. Zakharov V E (Ed.) Nonlinear Waves And Weak Turbulence (American Mathematical Society Translations, Ser. 2) Vol. 182 (Providence, RI: American Mathematical Society, 1998)
  28. Musher S L, Rubenchik A M, Zakharov V E Phys. Rep. 252 177 (1995)
  29. Zakharov V E, L’vov V S, Falkovich G Kolmogorov Spectra Of Turbulence I. Wave Turbulence (Berlin: Springer-Verlag, 1992)
  30. Kontorovich V M Radiofizika Radioastronomiya 11 5 (2006)
  31. Kats A V i dr Zh. Eksp. Teor. Fiz. 71 177 (1976); Kats A V et al Sov. Phys. JETP 44 93 (1976)
  32. Karas’ V I, Moiseev S S, Novikov V E Zh. Eksp. Teor. Fiz. 71 1421 (1976); Karas’ V I, Moiseev S S, Novikov V E Sov. Phys. JETP 44 744 (1976)
  33. Karas’ V I et al. The Intern. Conf. MSS-14. Mode Conversion, Coherent Structure and Turbulence, 24-27 November 2014, Conf. Proc. (Moscow: LENAND, 2014) p. 64
  34. Zakharov V E, Karas’ V I, Vlasenko A M The Intern. Conf. MSS-14. Mode Conversion, Coherent Structure and Turbulence, 24-27 November 2014, Conf. Proc. (Moscow: LENAND, 2014) p. 34
  35. Karas’ V I et al East Eur. J. Phys. 1 (3) 40 (2014)
  36. Karas’ V I, Vlasenko A M, Sokolenko V I, Zakharov V E Zh. Eksp. Teor. Fiz. 148 573 (2015); Karas’ V I, Vlasenko A M, Sokolenko V I, Zakharov V E JETP 121 499 (2015)
  37. Karas’ V I, Potapenko I F Voprosy Atomnoi Nauki Tekhniki. Ser. Fizika Radiatsionnykh Povrezhdenii Radiatsionnoe Materialovedenie (4-2) 150 (2009)
  38. Gindin I A, Kravchenko S F, Starodubov Ya D Prib. Tekh. Eksp. (3) 269 (1963)
  39. Aksenov V K i dr FNT 6 (1) 118 (1980)
  40. Aksenov V K i dr FNT 3 (7) 922 (1977)
  41. Gindin I A, Lavrinenko I S, Neklyudov I M Fiz. Tverd. Tela 15 636 (1973); Gindin I A, Lavrinenko I S, Neklyudov I M Sov. Phys. Solid State 15 451 (1973)
  42. Chow C R, Nembach E Acta Metallurg. 24 453 (1976)
  43. Aksenov V K i dr FNT 4 1316 (1978)
  44. Bol’shutkin D N, Desnenko V A, Il’ichev V Ya FNT 2 256 (1976)
  45. Bol’shutkin D N, Desnenko V A, Il’ichev V Ya FNT 2 1544 (1976)
  46. Dovbnya A N i dr Voprosy Atomnoi Nauki Tekhniki. Ser. Fizika Radiatsionnykh Povrezhdenii Radiatsionnoe Materialovedenie (2) 39 (2014)
  47. Karas’ V I Voprosy Atomnoi Nauki Tekhniki. Ser. Fizika Radiatsionnykh Povrezhdenii Radiatsionnoe Materialovedenie (4) 277 (2015)
  48. Karas’ V I, Vlasenko A M, Zakharov V E Proc. VI Intern. Conf. for Young Scientists "Low Temperature Physics", ICYS LTP 2015, Kharkov, 2015 p. 51
  49. Zakharov V E, Karas’ V I Problemy Teoreticheskoi Fiziki. Nauchnye Trudy Vyp. 1 (Khar’kov: KhNU im. V.N. Karazina, 2014) p. 248
  50. Karas’ V I et al Metallofizika Noveishie Tekhnologii 38 1024 (2016)
  51. Cpitsyn V I, Troitskii O A Vestnik AN SSSR (11) 10 (1974)
  52. Neklyudov I M, Kamyshanchenko N V Fizicheskie Osnovy Prochnosti i Plastichnosti Metallov Ch. 2 Defekty v Kristallakh (M. - Belgorod: Izd-vo Belgorodskogo GU, 1997)
  53. Landau A I, Gofman Yu I Fiz. Tverd. Tela 16 3427 (1974); Landau A I, Gofman Yu I Sov. Phys. Solid State 16 2220 (1975)
  54. Granato A, Lücke K J Appl. Phys. 27 583 (1956)
  55. Kaganov M I, Kravchenko V Ya, Natsik V D Usp. Fiz. Nauk 111 655 (1973); Kaganov M I, Kravchenko V Ya, Natsik V D Sov. Phys. Usp. 16 878 (1974)
  56. Perrin N, Budd H Phys. Rev. Lett. 28 1701 (1972)
  57. Bass F G, Gurevich Yu G Goryachie Elektrony i Sil’nye Elektromagnitnye Volny v Plazme Poluprovodnikov i Gazovogo Razryada (M.: Nauka, 1975)
  58. Silin V P Vvedenie v Kineticheskuyu Teoriyu Gazov 3-e izd., ispr. i dop. (M.: LIBROKOM, 2013)
  59. Lifshits E M, Pitaevskii L P Fizicheskaya Kinetika (M.: Fizmatlit, 2002); Per. na angl. yaz., Lifshitz E M, Pitaevskii L P Physical Kinetics (Oxford: Pergamon Press, 1981)
  60. Karas’ V I, Potapenko I F, Vlasenko A M Voprosy Atomnoi Nauki Tekhniki. Ser. Fizika Radiatsionnykh Povrezhdenii Radiatsionnoe Materialovedenie (4) 272 (2013)
  61. Karas’ V I, Vlasenko A M, Sokolenko V I Materialy 55-i Mezhdunarod. konf. "Aktual’nye problemy prochnosti" (Khar’kov: NNTs KhFTI, 2014)
  62. Lebedev V P, Savich S V Vestnik Khar’kovskogo Nats. Un-ta. Ser. Fizika 962 (15) 88 (2011)
  63. Sprecher A F, Mannan S L, Conrad H Acta Metallurg. 34 1145 (1986)
  64. Molotskii M, Fleurov V Phys. Rev. B 52 15829 (1995)
  65. Molotskii M, Fleurov V Phys. Rev. Lett. 78 2779 (1997)
  66. Molotskii M I Mater. Sci. Eng. A 287 248 (2000)
  67. Bilyk S R, Ramesh K T, Wright T W J. Mech. Phys. Solids 53 525 (2005)
  68. Unger J et al Proc. of the 2nd Intern. Conf. on High Speed Forming, Dortmund, 2006 p. 23
  69. Stolyarov V V Izv. RAN. Ser. Fiz. 79 1314 (2015); Stolyarov V V Bull. Russ. Acad. Sci. Phys. 79 1165 (2015)
  70. Stolyarov V V Izv. RAN. Ser. Fiz. 78 357 (2014); Stolyarov V V Bull. Russ. Acad. Sci. Phys. 78 234 (2014)
  71. Stolyarov V V Vest. Nauchno-tekhnicheskogo Razvitiya (3) 35 (2013)
  72. Conrad H Mater. Sci. Eng. A 287 276 (2000)
  73. Stolyarov V et al J. High Pressure Phys. Technol. 4 (16) 64 (2006)
  74. Medentsov V E, Stolyarov V V Deformatsiya Razrushenie Materialov (12) 37 (2012)
  75. Stolyarov V V Izv. RAN. Ser. Fiz. 76 108 (2012); Stolyarov V V Bull. Russ. Acad. Sci. Phys. 76 96 (2012)
  76. Stolyarov V V, Ugurchiev U Kh Fiz. Tekh. Vys. Davl. 19 92 (2009)
  77. Fedotkin A A, Medentsov V E, Stolyarov V V Izv. Vuzov. Chernaya Metal. 55 (8) 47 (2012)
  78. Zuev L B, Danilov V I Fizicheskie Osnovy Prochnosti Materialov 2-e izd. (Dolgoprudnyi: Intelekt, 2016)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions