Nonequilibrium kinetics of the electron—phonon subsystem can give rise to electric- and magnetic-plasticity effects in crystals in alternating electric and/or magnetic fields
V.I. Karas’a,b,
V.I. Sokolenkoa aNational Scientific Centre ‘Kharkov Physicotechnical Institute’, ul. Akademicheskaya 1, Kharkov, 310108, Ukraine bV.N. Karazin Khar'kov National University, pl. Svobody 4, Khar'kov, 61077, Ukraine
Kinetic processes in magnetic crystals in a changing magnetic field and/or a pulsed electric field are studied theoretically, experimentally and numerically to establish the mechanisms by which they influence the structure and the mechanical, dissipative and magnetic characteristics of crystals. The specific materials studied are highly deformed ferrite pearlite steel 15Kh2NMFA and nickel. The paper presents a systematic kinetic analysis of the nonequilibrium dynamics of the electron—phonon subsystem of a magnetic crystal in an electric field. Our proposed method that underlies the analysis solves the system of Boltzmann equations for the electron and phonon distribution functions numerically without expanding the electron distribution function in a power series of the phonon energy. It is shown that the electronic subsystem excited by the electric field transfers energy to the phonon subsystem and thereby massively produces short-wave phonons which act strongly on lattice defects (such as point and linear ones and phase boundaries) and thus redistribute and decrease their density as well as eliminating damage, decreasing local peak stresses and reducing the degradation of structural properties. It is found that under the action of the induction electric field, the electron distribution function becomes nonequilibrium near the Fermi energy and, as a result of electron—phonon collisions, transfers significant energy to the phonon subsystem, resulting in a nonequilibrium phonon distribution function. Based on modified Granato—Lucke's and Landau—Gofman's models, it is shown, using the calculated phonon distribution function, that the effect of phonons on dislocations is much stronger than it would be in the case of thermodynamic equilibrium at the experimentally measured sample temperature of 12 K.
Keywords: metals, physical-mechanical properties, alternating magnetic field, creep rate, ferromagnetic crystal, electron—phonon subsystem, dislocation mobility, nonequilibrium kinetics, magnetoplastic effect, electroplastic effect PACS:61.72.Ff, 61.72.Hh, 62.20.Hg, 63.20.kd, 63.20.kp, 75.80.+q, 83.60.Np (all) DOI:10.3367/UFNe.2018.06.038350 URL: https://ufn.ru/en/articles/2018/11/b/ 000457154900002 2-s2.0-85062268784 2018PhyU...61.1051K Citation: Karas’ V I, Sokolenko V I "Nonequilibrium kinetics of the electron—phonon subsystem can give rise to electric- and magnetic-plasticity effects in crystals in alternating electric and/or magnetic fields" Phys. Usp.61 1051–1071 (2018)
Gindin I A, Lavrinenko I S, Neklyudov I M Pis’ma ZhETF16 341 (1972); Gindin I A, Lavrinenko I S, Neklyudov I M JETP Lett.16 241 (1972)
Troitskii O A, Likhtman V I Dokl. Akad. Nauk SSSR148 332 (1963); Troitskii O A, Likhtman V I Sov. Phys. Dokl.8 91 (1963)
Gromov V E, Tsellermaier V Ya, Bazaikin V I Elektrostimulirovannoe Volochenie: Analiz Protsessa i Mikrostruktura (M.: Nedra, 1996)
Spitsyn V I, Troitskii O A Elektroplasticheskaya Deformatsiya Metallov (M.: Nauka, 1985)
Troitskii O A i dr Fizicheskie Osnovy Obrabotki Sovremennykh Materialov (teoriya, Tekhnologiya, Struktura i Svoistva) Vol. 1 (M. - Izhevsk: Iz-vo In-ta komp’yut. isled., 2004)
Neklyudov I M, Starodubov Ya D, Sokolenko V I Ukr. Fiz. Zhurn.50 (8A) A113 (2005)
Neklyudov I M i dr Fizika Khimiya Obrabotki Materialov (1) 84 (2011)
Vasil’ev M A Uspekhi Fiziki Metallov8 (1) 65 (2007)
Sokolenko V I et al J. Low Temp. Phys.41 399 (2015)
Neklyudov I M i dr Trudy 18-i Mezhdunarod. konf. po fizike radiatsionnykh yavlenii i radiatsionnomu materialovedeniyu (Khar’kov: NNTs KhFTI, 2008) p. 156
Zakharov V E Osnovy Fiziki Plazmy Vol. 2 (Pod red. A A Galeeva, R Sudana) (M: Energoatomizdat, 1984) p. 48; Zakharov V E Basic Plasma Physics Vol. 2 (Eds A A Galeev, R N Sudan) (Amsterdam: North-Holland, 1984) p. 3
Zakharov V E (Ed.) Nonlinear Waves And Weak Turbulence(American Mathematical Society Translations, Ser. 2) Vol. 182 (Providence, RI: American Mathematical Society, 1998)
Zakharov V E, L’vov V S, Falkovich G Kolmogorov Spectra Of Turbulence I. Wave Turbulence (Berlin: Springer-Verlag, 1992)
Kontorovich V M Radiofizika Radioastronomiya11 5 (2006)
Kats A V i dr Zh. Eksp. Teor. Fiz.71 177 (1976); Kats A V et al Sov. Phys. JETP44 93 (1976)
Karas’ V I, Moiseev S S, Novikov V E Zh. Eksp. Teor. Fiz.71 1421 (1976); Karas’ V I, Moiseev S S, Novikov V E Sov. Phys. JETP44 744 (1976)
Karas’ V I et al. The Intern. Conf. MSS-14. Mode Conversion, Coherent Structure and Turbulence, 24-27 November 2014, Conf. Proc. (Moscow: LENAND, 2014) p. 64
Zakharov V E, Karas’ V I, Vlasenko A M The Intern. Conf. MSS-14. Mode Conversion, Coherent Structure and Turbulence, 24-27 November 2014, Conf. Proc. (Moscow: LENAND, 2014) p. 34
Karas’ V I et al East Eur. J. Phys.1 (3) 40 (2014)
Karas’ V I, Vlasenko A M, Sokolenko V I, Zakharov V E Zh. Eksp. Teor. Fiz.148 573 (2015); Karas’ V I, Vlasenko A M, Sokolenko V I, Zakharov V E JETP121 499 (2015)
Karas’ V I, Potapenko I F Voprosy Atomnoi Nauki Tekhniki. Ser. Fizika Radiatsionnykh Povrezhdenii Radiatsionnoe Materialovedenie (4-2) 150 (2009)
Gindin I A, Kravchenko S F, Starodubov Ya D Prib. Tekh. Eksp. (3) 269 (1963)
Aksenov V K i dr FNT6 (1) 118 (1980)
Aksenov V K i dr FNT3 (7) 922 (1977)
Gindin I A, Lavrinenko I S, Neklyudov I M Fiz. Tverd. Tela15 636 (1973); Gindin I A, Lavrinenko I S, Neklyudov I M Sov. Phys. Solid State15 451 (1973)
Bol’shutkin D N, Desnenko V A, Il’ichev V Ya FNT2 256 (1976)
Bol’shutkin D N, Desnenko V A, Il’ichev V Ya FNT2 1544 (1976)
Dovbnya A N i dr Voprosy Atomnoi Nauki Tekhniki. Ser. Fizika Radiatsionnykh Povrezhdenii Radiatsionnoe Materialovedenie (2) 39 (2014)
Karas’ V I Voprosy Atomnoi Nauki Tekhniki. Ser. Fizika Radiatsionnykh Povrezhdenii Radiatsionnoe Materialovedenie (4) 277 (2015)
Karas’ V I, Vlasenko A M, Zakharov V E Proc. VI Intern. Conf. for Young Scientists "Low Temperature Physics", ICYS LTP 2015, Kharkov, 2015 p. 51
Zakharov V E, Karas’ V I Problemy Teoreticheskoi Fiziki. Nauchnye Trudy Vyp. 1 (Khar’kov: KhNU im. V.N. Karazina, 2014) p. 248
Karas’ V I et al Metallofizika Noveishie Tekhnologii38 1024 (2016)
Cpitsyn V I, Troitskii O A Vestnik AN SSSR (11) 10 (1974)
Neklyudov I M, Kamyshanchenko N V Fizicheskie Osnovy Prochnosti i Plastichnosti Metallov Ch. 2 Defekty v Kristallakh (M. - Belgorod: Izd-vo Belgorodskogo GU, 1997)
Landau A I, Gofman Yu I Fiz. Tverd. Tela16 3427 (1974); Landau A I, Gofman Yu I Sov. Phys. Solid State16 2220 (1975)
Bass F G, Gurevich Yu G Goryachie Elektrony i Sil’nye Elektromagnitnye Volny v Plazme Poluprovodnikov i Gazovogo Razryada (M.: Nauka, 1975)
Silin V P Vvedenie v Kineticheskuyu Teoriyu Gazov 3-e izd., ispr. i dop. (M.: LIBROKOM, 2013)
Lifshits E M, Pitaevskii L P Fizicheskaya Kinetika (M.: Fizmatlit, 2002); Per. na angl. yaz., Lifshitz E M, Pitaevskii L P Physical Kinetics (Oxford: Pergamon Press, 1981)
Karas’ V I, Potapenko I F, Vlasenko A M Voprosy Atomnoi Nauki Tekhniki. Ser. Fizika Radiatsionnykh Povrezhdenii Radiatsionnoe Materialovedenie (4) 272 (2013)
Karas’ V I, Vlasenko A M, Sokolenko V I Materialy 55-i Mezhdunarod. konf. "Aktual’nye problemy prochnosti" (Khar’kov: NNTs KhFTI, 2014)
Lebedev V P, Savich S V Vestnik Khar’kovskogo Nats. Un-ta. Ser. Fizika962 (15) 88 (2011)