Issues

 / 

2018

 / 

November

  

Reviews of topical problems


Nonequilibrium kinetics of the electron—phonon subsystem can give rise to electric- and magnetic-plasticity effects in crystals in alternating electric and/or magnetic fields

 a, b,  a
a National Scientific Centre ‘Kharkov Physicotechnical Institute’, ul. Akademicheskaya 1, Kharkov, 310108, Ukraine
b V.N. Karazin Khar'kov National University, pl. Svobody 4, Khar'kov, 61077, Ukraine

Kinetic processes in magnetic crystals in a changing magnetic field and/or a pulsed electric field are studied theoretically, experimentally and numerically to establish the mechanisms by which they influence the structure and the mechanical, dissipative and magnetic characteristics of crystals. The specific materials studied are highly deformed ferrite pearlite steel 15Kh2NMFA and nickel. The paper presents a systematic kinetic analysis of the nonequilibrium dynamics of the electron—phonon subsystem of a magnetic crystal in an electric field. Our proposed method that underlies the analysis solves the system of Boltzmann equations for the electron and phonon distribution functions numerically without expanding the electron distribution function in a power series of the phonon energy. It is shown that the electronic subsystem excited by the electric field transfers energy to the phonon subsystem and thereby massively produces short-wave phonons which act strongly on lattice defects (such as point and linear ones and phase boundaries) and thus redistribute and decrease their density as well as eliminating damage, decreasing local peak stresses and reducing the degradation of structural properties. It is found that under the action of the induction electric field, the electron distribution function becomes nonequilibrium near the Fermi energy and, as a result of electron—phonon collisions, transfers significant energy to the phonon subsystem, resulting in a nonequilibrium phonon distribution function. Based on modified Granato—Lucke's and Landau—Gofman's models, it is shown, using the calculated phonon distribution function, that the effect of phonons on dislocations is much stronger than it would be in the case of thermodynamic equilibrium at the experimentally measured sample temperature of 12 K.

Fulltext pdf (1.5 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.06.038350
Keywords: metals, physical-mechanical properties, alternating magnetic field, creep rate, ferromagnetic crystal, electron—phonon subsystem, dislocation mobility, nonequilibrium kinetics, magnetoplastic effect, electroplastic effect
PACS: 61.72.Ff, 61.72.Hh, 62.20.Hg, 63.20.kd, 63.20.kp, 75.80.+q, 83.60.Np (all)
DOI: 10.3367/UFNe.2018.06.038350
URL: https://ufn.ru/en/articles/2018/11/b/
000457154900002
2-s2.0-85062268784
2018PhyU...61.1051K
Citation: Karas’ V I, Sokolenko V I "Nonequilibrium kinetics of the electron—phonon subsystem can give rise to electric- and magnetic-plasticity effects in crystals in alternating electric and/or magnetic fields" Phys. Usp. 61 1051–1071 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 9th, August 2017, revised: 1st, May 2018, 6th, June 2018

Оригинал: Карась В И, Соколенко В И «Неравновесная кинетика электрон-фононной подсистемы кристалла при действии переменных электрических и магнитных полей как основа электро- и магнитопластического эффектов» УФН 188 1155–1177 (2018); DOI: 10.3367/UFNr.2018.06.038350

References (78) Cited by (8) ↓ Similar articles (20)

  1. Sokolenko V I 49 1316 (2023)
  2. Malinskii T V, Rogalin V E et al Phys. Metals Metallogr. 124 728 (2023)
  3. Malinskiy T V, Rogalin V E Tech. Phys. 68 S473 (2023)
  4. Malinskii T V, Rogalin V E et al Fizika Metallov I Metallovedenie 124 653 (2023)
  5. Chernyak N A, Sokolenko V I 219 (2022)
  6. Malinskii T V, Rogalin V E, Yamshchikov V A Phys. Metals Metallogr. 123 178 (2022)
  7. Tyurin Yu I, Sypchenko V S et al Data In Brief 28 104850 (2020)
  8. Tyurin Yu I, Sypchenko V S et al International Journal Of Hydrogen Energy 44 20223 (2019)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions