Issues

 / 

2017

 / 

June

  

Reviews of topical problems


Vacancy-impurity centers in diamond: perspectives of synthesis and applications

,
Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation

The bright luminescence of impurity-vacancy complexes in diamond, combined with its high chemical and radiation resistance, makes diamond an attractive platform for production of single-photon emitters and luminescence biomarkers for application in nanoelectronics and medicine. Two representatives of this kind of defects in diamond, silicon-vacancy (SiV) and germanium-vacancy (GeV) centers are discussed in this review with paying attention to their similarities and differences from the more thorough studied nitrogen-vacancy (NV) complexes. The recent discovery of GeV luminescence center opens a unique opportunity for the controlled synthesis of single photon emitters in nanodiamonds. In this review, we demonstrate prospects of high-pressure high-temperature (HPHT) technique for creation of single-photon emitters not only as an auxiliary to chemical vapor deposition (CVD) and ion-implantation methods, but also as a primary synthesis tool for producing color centers in nanodiamonds. Beside practical applications, comparative studies of these two complexes, which belong to the same structural class of defects, have fundamental meaning for deeper understanding of shelving levels, electronic structure and optical properties of these centers. In conclusion, we discuss few open problems regarding structure, charge state and practical application of these centers, which still require their solution.

Fulltext pdf (955 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2016.11.037959
Keywords: high pressure, diamond, vacancy-impurity complexes, color centers, luminescence
PACS: 33.15.Pw, 33.50.Dq, 42.50.Ex, 61.46.−w, 61.71.U-, 63.20.kp, 63.20.Pw, 78.55.−m, 81.10.−h (all)
DOI: 10.3367/UFNe.2016.11.037959
URL: https://ufn.ru/en/articles/2017/6/a/
000409222900001
2-s2.0-85029173881
2017PhyU...60..539E
Citation: Ekimov E A, Kondrin M V "Vacancy-impurity centers in diamond: perspectives of synthesis and applications" Phys. Usp. 60 539–558 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, July 2016, revised: 31st, October 2016, 8th, November 2016

Оригинал: Екимов Е А, Кондрин М В «Примесно-вакансионные комплексы в алмазе: перспективы синтеза и применений» УФН 187 577–598 (2017); DOI: 10.3367/UFNr.2016.11.037959

References (148) Cited by (44) ↓ Similar articles (20)

  1. Mary J R, Pobedinskas P et al ACS Appl. Nano Mater. 7 3873 (2024)
  2. Shiryaev A A Uspekhi Fizicheskikh Nauk 194 600 (2024)
  3. [Shiryaev A A Phys. Usp. 67 561 (2024)]
  4. Shakhov F M, Ruchkin I A et al Diamond And Related Materials 147 111260 (2024)
  5. Lai Sh, Lin Ya et al Crystal Growth & Design 24 3910 (2024)
  6. Khomich A A, Popovich A, Khomich A V Materials 17 5168 (2024)
  7. Kromka A, Varga M et al ACS Appl. Nano Mater. 7 24766 (2024)
  8. Chen Ch, Jiang B, Hu X Functional Diamond 4 (1) (2024)
  9. Gritsienko A V, Pugachev M V et al Jetp Lett. 119 838 (2024)
  10. Gritsienko A V, Pugachev M V et al Pisʹma V žurnal êksperimentalʹnoj I Teoretičeskoj Fiziki 119 802 (2024)
  11. Pedroza-Montero F A, Pedroza-Montero J N et al Optical Materials 140 113872 (2023)
  12. Kudryashov S, Danilov P et al Nanomaterials 13 192 (2023)
  13. Chen Y, Li Ch et al ACS Nano 17 2725 (2023)
  14. Liu Ya, Guo Q et al Journal Of Crystal Growth 619 127346 (2023)
  15. Liu 刘 Ya 杨, Wang 王 Zh 志 et al Chinese Phys. B 32 128102 (2023)
  16. Stone D G, Chen Y et al ACS Appl. Opt. Mater. 1 898 (2023)
  17. Arnault Je-Ch, Saada S, Ralchenko V Physica Rapid Research Ltrs 16 (1) (2022)
  18. Filonenko V P, Bagramov R Kh et al Diamond And Related Materials 129 109383 (2022)
  19. Krivobok V S, Ekimov E A et al Phys. Rev. Materials 6 (9) (2022)
  20. Shiryaev A A, Ekimov E A et al Jetp Lett. 115 651 (2022)
  21. Green B L, Collins A T, Breeding Ch M 88 637 (2022)
  22. Ekimov E, Shiryaev A A et al Nanomaterials 12 351 (2022)
  23. Ekimov E A, Kondrin M V et al Inorg Mater 57 1234 (2021)
  24. Grudinkin S A, Feoktistov N A et al Nanomaterials 11 2814 (2021)
  25. Ekimov E A, Kondrina K M et al Materials Research Bulletin 137 111189 (2021)
  26. Eremchev I Yu, Neliubov A Yu et al J. Phys. Chem. C 125 17774 (2021)
  27. Krasin G K, Stsepuro N G et al J. Phys.: Conf. Ser. 2127 012050 (2021)
  28. Sukachev D D Phys.-Usp. 64 1021 (2021)
  29. Arnault Je-Ch Handbook of Carbon-Based Nanomaterials (2021) p. 209
  30. Sarathchandran C, Thomas S, Ilangovan S A Handbook of Carbon-Based Nanomaterials (2021) p. 1
  31. Nizovtsev A P, Pushkarchuk A L et al Nanomaterials 11 1303 (2021)
  32. Wang X, Liu X Inorg. Chem. Front. 7 2890 (2020)
  33. Lebedev V F, Bulyga D V, Koliadin A V Tech. Phys. Lett. 46 413 (2020)
  34. Ekimov E A, Kondrina K M et al Inorg Mater 55 437 (2019)
  35. Ekimov E A, Kondrin M V Uspekhi Fizicheskikh Nauk 189 208 (2019) [Ekimov E A, Kondrin M V Phys.-Usp. 62 199 (2019)]
  36. Smith Ja M, Meynell S A et al 8 1889 (2019)
  37. Poklonski N A, Vyrko S A et al Mater. Res. Express 6 042002 (2019)
  38. Ekimov E A, Kondrin M V et al Diamond And Related Materials 93 75 (2019)
  39. Pushkarchuk A L, Kuten S A et al Int. J. Nanosci. 18 1940010 (2019)
  40. Ekimov E A, Lyapin S G et al J. Exp. Theor. Phys. 129 855 (2019)
  41. Ekimov E A, Lyapin S G, Kondrin M V Diamond And Related Materials 87 223 (2018)
  42. Mavrin B N J. Exp. Theor. Phys. 127 1016 (2018)
  43. Ekimov E A, Sherin P S et al Phys. Rev. B 97 (4) (2018)
  44. Ekimov E A, Krivobok V S et al Phys. Rev. B 95 (9) (2017)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions