Issues

 / 

2016

 / 

September

  

Methodological notes


Nonlinear dynamics of high-power ultrashort laser pulses: exaflop computations on a laboratory station and subcycle light bullets

 a, b,  a, b, c, d
a International Laser Center of M.V. Lomonosov Moscow State University, Vorobevy gory, Moscow, 119992, Russian Federation
b International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center), ul. Novaya 100, Skolkovo, Moscow Region, 143025, Russian Federation
c Texas A&M University, College Station, Texas, USA
d National Research Centre ‘Kurchatov Institute’, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation

Propagation of high-power ultrashort light pulses involves an intricate nonlinear spatiotemporal dynamics where various spectral—temporal transformation effects are strongly coupled to the beam dynamics, which, in its turn, varies from the leading to the trailing edge of the pulse. Analysis of this nonlinear dynamics, accompanied by spatial instabilities, beam breakup into multiple filaments, and unique phenomena leading to the generation of extremely short optical field waveforms, is equivalent in its computational complexity to a simulation of time evolution of a billion-dimensional physical system. Such analysis requires exaflops of computational operations and is usually performed on high-performance supercomputers. Here, we present methods of physical modeling and numerical analysis that allow problems of this class to be solved on a laboratory computer boosted by a cluster of graphic accelerators. Exaflop computations performed with the use of these methods reveal new unique phenomena of spatiotemporal dynamics of high-power ultrashort laser pulses. We demonstrate that unprecedentedly short light bullets can be generated as a part of this dynamics, providing optical field localization both in space and time through a delicate balance of dispersion and nonlinearity with simultaneous suppression of diffraction-induced beam divergence due to the joint effect of Kerr and ionization nonlinearities.

Fulltext is available at IOP
Keywords: ultrashort laser pulses, ultrafast nonlinear optics, laser-induced filamentation
PACS: 42.65.Re
DOI: 10.3367/UFNe.2016.02.037700
URL: https://ufn.ru/en/articles/2016/9/d/
Citation: Voronin A A, Zheltikov A M "Nonlinear dynamics of high-power ultrashort laser pulses: exaflop computations on a laboratory station and subcycle light bullets" Phys. Usp. 59 869–877 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 24th, January 2016, 2nd, February 2016

Оригинал: Воронин А А, Желтиков А М «Нелинейная динамика сверхмощных ультракоротких лазерных импульсов: эксафлопные вычисления на лабораторном компьютере и субпериодные световые пули» УФН 186 957–966 (2016); DOI: 10.3367/UFNr.2016.02.037700

References (44) ↓ Cited by (11) Similar articles (11)

  1. Fattahi H et al. Optica 1 45 (2014)
  2. Korzhimanov A V i dr. Usp. Fiz. Nauk 181 9 (2011); Korzhimanov A V et al. Phys. Usp. 54 9 (2011)
  3. Couairon A, Mysyrowicz A Phys. Rep. 441 47 (2007)
  4. Bergé L et al. Rep. Prog. Phys. 70 1633 (2007)
  5. Serebryannikov E E, Goulielmakis E, Zheltikov A M New J. Phys. 10 093001 (2008)
  6. Chin S L Femtosecond Laser Filamentation (Springer Series on Atomic, Optical, and Plasma Physics) Vol. 55 (New York: Springer, 2010)
  7. Chekalin S V, Kandidov V P Usp. Fiz. Nauk 183 133 (2013); Chekalin S V, Kandidov V P Phys. Usp. 56 123 (2013)
  8. Zheltikov A Appl. Phys. B 77 143 (2003)
  9. Kasparian J et al. Science 301 61 (2003)
  10. Zheltikov A M Usp. Fiz. Nauk 176 623 (2006); Zheltikov A M Phys. Usp. 49 605 (2006)
  11. Silva F et al. Nature Commun. 3 807 (2012)
  12. Lanin A A et al. Opt. Lett. 39 6430 (2014)
  13. Liang H et al. Opt. Lett. 40 1069 (2015)
  14. Hauri C P et al. Appl. Phys. B 79 673 (2004)
  15. Couairon A et al. Opt. Lett. 30 2657 (2005)
  16. Skupin S et al. Phys. Rev. E 74 056604 (2006)
  17. Kartashov D et al. Phys. Rev. A 86 033831 (2012)
  18. Malevich P N et al. Opt. Express 20 18784 (2012)
  19. Malevich P N et al. Opt. Lett. 40 2469 (2015)
  20. Bespalov V I, Talanov V I Pis’ma ZhETF 3 471 (1966); Bespalov V I, Talanov V I JETP Lett. 3 307 (1966)
  21. Voronin A A et al. Opt. Commun. 291 299 (2013)
  22. Voronin A A, Zheltikov A M Phys. Rev. A 94 023824 (2016)
  23. Voronin A A, Zheltikov A M Phys. Rev. A 90 043807 (2014)
  24. Zhokhov P A, Zheltikov A M Phys. Rev. Lett. 110 183903 (2013)
  25. Keldysh L V Zh. Eksp. Teor. Fiz. 47 1945 (1964); Keldysh L V Sov. Phys. JETP 20 1307 (1965)
  26. Popov V S Usp. Fiz. Nauk 174 921 (2004); Popov V S Phys. Usp. 47 855 (2004)
  27. Foster I T Designing And Building Parallel Programs. Concepts And Tools For Parallel Software Engineering (Reading, Mass.: Addison-Wesley, 1995)
  28. Manavski S A, Valle G BMC Bioinform. 9 S10 (2008)
  29. Popmintchev T et al. Science 336 1287 (2012)
  30. Mitrofanov A V et al. Sci. Rep. 5 8368 (2015)
  31. Mitrofanov A V i dr. Usp. Fiz. Nauk 185 97 (2015); Mitrofanov A V et al. Phys. Usp. 58 89 (2015)
  32. Mitrofanov A V et al. Opt. Lett. 40 2068 (2015)
  33. Durand M et al. Phys. Rev. Lett. 110 115003 (2013)
  34. Majus D et al. Phys. Rev. Lett. 112 193901 (2014)
  35. Agrawal G P Applications Of Nonlinear Fiber Optics (San Diego: Academic Press, 2001)
  36. Zheltikov A M Usp. Fiz. Nauk 177 737 (2007); Zheltikov A M Phys. Usp. 50 705 (2007)
  37. Goulielmakis E et al. Science 317 769 (2007)
  38. Wirth A et al. Science 334 195 (2011)
  39. Huang S-W et al. Nature Photon. 5 475 (2011)
  40. Balciunas T et al. Nature Commun. 6 6117 (2015)
  41. Corkum P B, Krausz F Nature Phys. 3 381 (2007)
  42. Zheltikov A M Phys. Rev. A 88 063847 (2013)
  43. Silberberg Y Opt. Lett. 15 1282 (1990)
  44. Moll K D, Gaeta A L, Fibich G Phys. Rev. Lett. 90 203902 (2003)

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions