Issues

 / 

2016

 / 

July

  

Methodological notes


One-dimensional modulational instability models of intense Langmuir plasma oscillations using the Silin—Zakharov equations

 a,  b,  b
a Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
b V.N. Karazin Khar'kov National University, pl. Svobody 4, Khar'kov, 61077, Ukraine

The modulational instability mechanisms of intense Langmuir oscillations in a plasma are reviewed both for field energy densities below (Zakharov's model) and above (Silin's model) the plasma's thermal energy density. It is shown by a one-dimensional example that V E Zakharov's mechanism involving nonlinear absorption of plasma waves also holds for intense cold plasma fields described by V P Silin's model. It is also shown that the development mechanisms of the modulational instability of Langmuir oscillations are similar for nonisothermal and cold plasmas. Hybrid models treating the electrons quasi-hydrodynamically and the ions as particles are analyzed in detail which allow the study of the direct mechanism by which energy is transferred to ions in the process as an instability develops.

Fulltext pdf (386 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2016.01.037697
Keywords: modulational instability, parametric instability, non-isothermal and cold plasmas, Zakharov's model, Silin's model, hybrid models
PACS: 52.35.−g, 52.65.−y (all)
DOI: 10.3367/UFNe.2016.01.037697
URL: https://ufn.ru/en/articles/2016/7/c/
000386357600003
2-s2.0-84991688548
2016PhyU...59..669Z
Citation: Zagorodnii A G, Kirichok A V, Kuklin V M "One-dimensional modulational instability models of intense Langmuir plasma oscillations using the Silin—Zakharov equations" Phys. Usp. 59 669–688 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 7th, December 2015, 14th, January 2016

Оригинал: Загородний А Г, Киричок А В, Куклин В М «Одномерные модели модуляционной неустойчивости интенсивных ленгмюровских колебаний в плазме на основе уравнений Захарова и Силина» УФН 186 743–762 (2016); DOI: 10.3367/UFNr.2016.01.037697

References (63) Similar articles (20) ↓

  1. M.V. Kuzelev, A.A. Rukhadze “Nonrelativistic quantum theory of stimulated Cherenkov radiation and Compton scattering in a plasmaPhys. Usp. 54 375–380 (2011)
  2. A.S. Dzarakhokhova, N.P. Zaretskii et alIdentity of the mechanisms of Weibel and Alfvén-cyclotron plasma instabilitiesPhys. Usp. 63 611–616 (2020)
  3. G.A. Markov, A.S. Belov “Demonstration of nonlinear wave phenomena in the plasma of a laboratory model of an ionospheric-magnetospheric density ductPhys. Usp. 53 703–712 (2010)
  4. A.V. Nedospasov “On an estimate of turbulent transport in a magnetized plasma (to the 90th anniversary of the birth of B.B. Kadomtsev)Phys. Usp. 61 1079–1081 (2018)
  5. S.V. Vladimirov, Yu.O. Tyshetskiy “On description of a collisionless quantum plasmaPhys. Usp. 54 1243–1256 (2011)
  6. A.G. Shalashov, E.D. Gospodchikov “Impedance technique for modeling of electromagnetic wave propagation in anisotropic and gyrotropic mediaPhys. Usp. 54 145–165 (2011)
  7. D.S. Agafontsev, E.A. Kuznetsov et alCompressible vortex structures and their role in the onset of hydrodynamic turbulencePhys. Usp. 65 189–208 (2022)
  8. A.A. Abrashkin, E.N. Pelinovsky “On the relation between Stokes drift and the Gerstner wavePhys. Usp. 61 307–312 (2018)
  9. A.A. Shatskii, I.D. Novikov, N.S. Kardashev “A dynamic model of the wormhole and the Multiverse modelPhys. Usp. 51 457–464 (2008)
  10. S.S. Kalmykova, V.I. Kurilko “Physical mechanisms for the hydrodynamic beam-plasma instabilitySov. Phys. Usp. 31 750–762 (1988)
  11. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentallyPhys. Usp. 55 796–807 (2012)
  12. V.I. Ritus “Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuumPhys. Usp. 65 468–486 (2022)
  13. N.I. Shakura, K.A. Postnov et alMagnetorotational instability in Keplerian disks: a nonlocal approachPhys. Usp. 66 1262–1276 (2023)
  14. P.S. Landa, Ya.B. Duboshinskii “Self-oscillatory systems with high-frequency energy sourcesSov. Phys. Usp. 32 723–731 (1989)
  15. V.I. Ritus “Lagrange equations of motion of particles and photons in the Schwarzschild fieldPhys. Usp. 58 1118–1123 (2015)
  16. N.A. Vinokurov “Analytical mechanics and field theory: derivation of equations from energy conservationPhys. Usp. 57 593–596 (2014)
  17. A.G. Shalashov “Can we refer to Hamilton equations for an oscillator with friction?Phys. Usp. 61 1082–1088 (2018)
  18. M.V. Kuzelev, A.A. Rukhadze “Waves in inhomogeneous plasmas and liquid and gas flows. Analogies between electro- and gas-dynamic phenomenaPhys. Usp. 61 748–764 (2018)
  19. Yu.N. Barabanenkov, S.A. Nikitov, M.Yu. Barabanenkov “Quantum fluctuations in magnetic nanostructuresPhys. Usp. 62 82–91 (2019)
  20. I.F. Ginzburg “Particles in finite and infinite one-dimensional chainsPhys. Usp. 63 395–406 (2020)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions