Issues

 / 

2016

 / 

February

  

Conferences and symposia


Ultracold lanthanides: from optical clocks to quantum simulators

 a, b,  a, b,  a, b,  b,  b,  a, b,  b, a,  b
a Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
b Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

Directions in the studies of laser-cooled lanthanides and their possible applications in precision spectroscopy and quantum optics are considered. We discuss the specific electronic structure of hollow atoms providing their promising applications in optical frequency standards and quantum simulators based on atomic spin interactions in optical lattices. The features of laser cooling of atoms, optical lattice trapping techniques and clock transition spectroscopy using narrowband lasers are described by the example of thulium atoms.

Fulltext is available at IOP
Keywords: laser cooling, lanthanides, optical frequency standards, ultrastable laser systems, quantum simulations
PACS: 32.30.Jc, 37.10.De, 37.10.Gh (all)
DOI: 10.3367/UFNe.0186.201602h.0176
URL: https://ufn.ru/en/articles/2016/2/h/
Citation: Vishnyakova G A, Golovizin A A, Kalganova E S, Sorokin V N, Sukachev D D, Tregubov D O, Khabarova K Yu, Kolachevsky N N "Ultracold lanthanides: from optical clocks to quantum simulators" Phys. Usp. 59 168–173 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 30th, November 2015, 28th, October 2015

Оригинал: Вишнякова Г А, Головизин А А, Калганова Е С, Сорокин В Н, Сукачёв Д Д, Трегубов Д О, Хабарова К Ю, Колачевский Н Н «Ультрахолодные лантаноиды: от оптических часов до квантовых симуляторов» УФН 186 176–182 (2016); DOI: 10.3367/UFNr.0186.201602h.0176

References (53) ↓ Cited by (8) Similar articles (20)

  1. McClelland J J, Hanssen J L Phys. Rev. Lett. 96 143005 (2006)
  2. Youn S H et al. Phys. Rev. A 82 (4) 043425 (2010)
  3. Miao J et al. Phys. Rev. A 89 (4) 041401 (2014)
  4. Sukachev D et al. Phys. Rev. A 82 011405(R) (2010)
  5. Kolachevskii N N i dr. Kvantovaya Elektronika 31 61 (2001); Kolachevskii N N et al. Quantum Electron. 31 61 (2001)
  6. Kolachevskii N N Usp. Fiz. Nauk 181 896 (2011); Kolachevsky N N Phys. Usp. 54 863 (2011)
  7. Chin C et al. Rev. Mod. Phys. 82 1225 (2010)
  8. Dalibard J, Cohen-Tannoudji C J. Opt. Soc. Am. B 6 2023 (1989)
  9. Sukachev D D i dr. Pis’ma ZhETF 92 772 (2010); Sukachev D D et al. JETP Lett. 92 703 (2010)
  10. Raab E L et al. Phys. Rev. Lett. 59 2631 (1987)
  11. Chebakov K et al. Opt. Lett. 34 2955 (2009)
  12. Vishnyakova G A et al. Laser Phys. 24 074018 (2014)
  13. Loftus T H et al. Phys. Rev. A 70 063413 (2004)
  14. Golovizin A A i dr. Kvantovaya Elektronika 45 482 (2015); Golovizin A A et al. Quantum Electron. 45 482 (2015)
  15. Eschner J et al. J. Opt. Soc. Am. B 20 1003 (2003)
  16. Hidetoshi K Nature Photonics 5 203 (2011)
  17. Udem Th, Holzwarth R, Hänsch T W Nature 416 233 (2002)
  18. Khabarova K Yu i dr. Kvantovaya Elektronika 42 1021 (2012); Khabarova K Yu et al. Quantum Electron. 42 1021 (2012)
  19. Corning Incorporated, Corning Code 7972 Ultra Low Expansion Glass, http://www.corning.com/media/worldwide/csm/documents/D20FD2EA-7264-43DD-B544-E1CA042B486A.pdf
  20. Numata K, Kemery A, Camp J Phys. Rev. Lett. 93 250602 (2004)
  21. Kessler T et al. Nature Photon. 6 687 (2012)
  22. Cole G et al. Nature Photon. 7 644 (2013)
  23. Ginzburg V L, Kirzhnits D A Usp. Fiz. Nauk 152 575 (1987); Ginzburg V L, Kirzhnits D A Sov. Phys. Usp. 30 671 (1987)
  24. Ginzburg V L Usp. Fiz. Nauk 175 187 (2005); Ginzburg V L Phys. Usp. 48 173 (2005)
  25. Schrieffer J R Handbook Of High-Temperature Superconductivity. Theory And Experiment (New York: Springer, 2007)
  26. Putilin S N et al. Nature 362 226 (1993)
  27. Bednorz J G, Müller K A Z. Phys. B 64 189 (1986)
  28. Troyer M, Wiese U-J Phys. Rev. Lett. 94 170201 (2005)
  29. Bloch I Nature Phys. 1 23 (2005)
  30. Köhl M et al. Phys. Rev. Lett. 94 080403 (2005)
  31. Bloch I et al. Nature Phys. 8 267 (2012)
  32. Lewenstein M et al. Adv. Phys. 56 243 (2007)
  33. Feynman R P Int. J. Theor. Phys. 21 467 (1982)
  34. Dalibard J et al. Rev. Mod. Phys. 83 1523 (2011)
  35. Aidelsburger M et al. Phys. Rev. Lett. 107 255301 (2011)
  36. Mosk A et al. Appl. Phys. B 73 791 (2001)
  37. Bakr W S et al. Nature 462 74 (2009)
  38. Parsons M F et al. Phys. Rev. Lett. 114 213002 (2015)
  39. Islam R et al. arXiv:1509.01160
  40. Schneider U et al. Science 322 1520 (2008)
  41. Chin J K et al. Nature 443 961 (2006)
  42. Martiyanov K et al. Phys. Rev. Lett. 105 030404 (2010)
  43. Simon J et al. Nature 472 307 (2011)
  44. Mandel O et al. Phys. Rev. Lett. 91 010407 (2003)
  45. Greiner M et al. Nature 415 39 (2002)
  46. Jördens R et al. Nature 455 204 (2008)
  47. Barnett R et al. Phys. Rev. Lett. 96 190401 (2006)
  48. Góral K, Santos L, Lewenstein M Phys. Rev. Lett. 88 170406 (2002)
  49. Kolachevsky N et al. Appl. Phys. B 89 589 (2007)
  50. Sukachev D D i dr. Kvantovaya Elektronika 44 515 (2014); Sukachev D D et al. Quantum Electron. 44 515 (2014)
  51. Frisch A et al. Nature 507 475 (2014)
  52. Baumann K et al. Phys. Rev. A 89 020701(R) (2014)
  53. Petrov A,Tiesinga E, Kotochigova S Phys. Rev. Lett. 109 103002 (2012)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions