Reviews of topical problems

The system of convective thermals as a generalized ensemble of Brownian particles

 a, b,  a, b
a Russian Academy of Science Oil and Research Institute, ul. Gubkina 3, Moscow, 119333, Russian Federation
b National Research University Higher School of Economics, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation

The system of thermals that makes the fine structure of a turbulent convective layer of liquid or gas is considered. A simplified probabilistic-geometrical approach is outlined that uses measurements along the observation line to determine the average in-plane parameters of this system. A dynamic equation for an isolated thermal interacting with its environment is derived. A Langevin equation similar to the stochastic equation for an ensemble of "fast" Brownian particles is constructed for a system of thermals. The nonlinear Langevin equation for such a system leads to the associated kinetic form of the Fokker—Planck equation. It is shown that the stationary solution of the kinetic Fokker—Planck equation is identical to the Maxwell distribution and approximately consistent with the distributions measured in the turbulent convective layer of the atmosphere.

Fulltext is available at IOP
Keywords: stochastic ensemble of convective thermals, the nonlinear Langevin equation, Fokker—Planck equation, Maxwell velocity distribution for an ensemble of convective thermals
PACS: 05.10.Gg, 05.40.Jc, 44.25.+f, 92.60.Fm, (all)
DOI: 10.3367/UFNe.0186.201602a.0113
Citation: Vulfson A N, Borodin O O "The system of convective thermals as a generalized ensemble of Brownian particles" Phys. Usp. 59 109–120 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, August 2015, revised: 30th, November 2015, 1st, December 2015

Оригинал: Вульфсон А Н, Бородин О О «Система конвективных термиков как обобщённый ансамбль броуновских частиц» УФН 186 113–124 (2016); DOI: 10.3367/UFNr.0186.201602a.0113

References (65) Cited by (8) Similar articles (20) ↓

  1. K.V. Koshel, S.V. Prants “Chaotic advection in the ocean49 1151–1178 (2006)
  2. O.G. Onishchenko, O.A. Pokhotelov et alStructure and dynamics of concentrated mesoscale vortices in planetary atmospheres63 683–697 (2020)
  3. B.M. Smirnov “Electrical cycle in the Earth’s atmosphere57 1041–1062 (2014)
  4. O.G. Onishchenko, O.A. Pokhotelov, N.M. Astaf’eva “Generation of large-scale eddies and zonal winds in planetary atmospheres51 577–589 (2008)
  5. F.V. Dolzhanskii, V.A. Krymov, D.Yu. Manin “Stability and vortex structures of quasi-two-dimensional shear flows33 (7) 495–520 (1990)
  6. L.Kh. Ingel, M.V. Kalashnik “Nontrivial features in the hydrodynamics of seawater and other stratified solutions55 356–381 (2012)
  7. S.V. Bulanov, Ja.J. Wilkens et alLaser ion acceleration for hadron therapy57 1149–1179 (2014)
  8. D.N. Razdoburdin, V.V. Zhuravlev “Transient dynamics of perturbations in astrophysical disks58 1031–1058 (2015)
  9. V.M. Fedorov “Earth insolation variation and its incorporation into physical and mathematical climate models62 32–45 (2019)
  10. Yu.L. Klimontovich “Nonlinear Brownian motion37 737–766 (1994)
  11. V.S. Anishchenko, A.B. Neiman et alStochastic resonance: noise-enhanced order42 7–36 (1999)
  12. O.G. Bakunin “Stochastic instability and turbulent transport. Characteristic scales, increments, diffusion coefficients58 252–285 (2015)
  13. I.R. Stakhovsky “Scale invariance of shallow seismicity and the prognostic signs of earthquakes60 472–489 (2017)
  14. G.M. Zaslavskii, R.Z. Sagdeev et alMinimal chaos, stochastic webs, and structures of quasicrystal symmetry31 887–915 (1988)
  15. A.A. Chernyshov, K.V. Karelsky, A.S. Petrosyan “Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas57 421–452 (2014)
  16. M.Yu. Tretyakov, M.A. Koshelev et alWater dimer and the atmospheric continuum57 1083–1098 (2014)
  17. V.B. Efimov “Acoustic turbulence of second sound waves in superfluid helium61 929–951 (2018)
  18. A.I. Zhakin “Electrohydrodynamics of charged surfaces56 141–163 (2013)
  19. G.I. Strelkova, V.S. Anishchenko “Spatio-temporal structures in ensembles of coupled chaotic systems63 145–161 (2020)
  20. A.N. Pavlov, A.E. Hramov et alWavelet analysis in neurodynamics55 845–875 (2012)

The list is formed automatically.

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions