Issues

 / 

2016

 / 

February

  

Reviews of topical problems


The system of convective thermals as a generalized ensemble of Brownian particles

 a, b,  a, b
a Russian Academy of Science Oil and Research Institute, ul. Gubkina 3, Moscow, 119333, Russian Federation
b HSE University, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation

The system of thermals that makes the fine structure of a turbulent convective layer of liquid or gas is considered. A simplified probabilistic-geometrical approach is outlined that uses measurements along the observation line to determine the average in-plane parameters of this system. A dynamic equation for an isolated thermal interacting with its environment is derived. A Langevin equation similar to the stochastic equation for an ensemble of "fast" Brownian particles is constructed for a system of thermals. The nonlinear Langevin equation for such a system leads to the associated kinetic form of the Fokker—Planck equation. It is shown that the stationary solution of the kinetic Fokker—Planck equation is identical to the Maxwell distribution and approximately consistent with the distributions measured in the turbulent convective layer of the atmosphere.

Fulltext pdf (558 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0186.201602a.0113
Keywords: stochastic ensemble of convective thermals, the nonlinear Langevin equation, Fokker—Planck equation, Maxwell velocity distribution for an ensemble of convective thermals
PACS: 05.10.Gg, 05.40.Jc, 44.25.+f, 92.60.Fm, 92.60.hk (all)
DOI: 10.3367/UFNe.0186.201602a.0113
URL: https://ufn.ru/en/articles/2016/2/b/
000377714800002
2-s2.0-84973125282
2016PhyU...59..109V
Citation: Vulfson A N, Borodin O O "The system of convective thermals as a generalized ensemble of Brownian particles" Phys. Usp. 59 109–120 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, August 2015, revised: 30th, November 2015, 1st, December 2015

Оригинал: Вульфсон А Н, Бородин О О «Система конвективных термиков как обобщённый ансамбль броуновских частиц» УФН 186 113–124 (2016); DOI: 10.3367/UFNr.0186.201602a.0113

References (65) Cited by (11) Similar articles (20) ↓

  1. M.V. Kalashnik, M.V. Kurgansky, O.G. Chkhetiani “Baroclinic instability in geophysical fluid dynamicsPhys. Usp. 65 1039–1070 (2022)
  2. K.V. Koshel, S.V. Prants “Chaotic advection in the oceanPhys. Usp. 49 1151–1178 (2006)
  3. O.G. Onishchenko, O.A. Pokhotelov et alStructure and dynamics of concentrated mesoscale vortices in planetary atmospheresPhys. Usp. 63 683–697 (2020)
  4. B.M. Smirnov “Electrical cycle in the Earth’s atmospherePhys. Usp. 57 1041–1062 (2014)
  5. O.G. Onishchenko, O.A. Pokhotelov, N.M. Astaf’eva “Generation of large-scale eddies and zonal winds in planetary atmospheresPhys. Usp. 51 577–589 (2008)
  6. V.M. Fedorov “Problems of parameterization of the radiation block in physical and mathematical climate models and the possibility of their solutionPhys. Usp. 66 914–930 (2023)
  7. F.V. Dolzhanskii, V.A. Krymov, D.Yu. Manin “Stability and vortex structures of quasi-two-dimensional shear flowsSov. Phys. Usp. 33 (7) 495–520 (1990)
  8. L.Kh. Ingel, M.V. Kalashnik “Nontrivial features in the hydrodynamics of seawater and other stratified solutionsPhys. Usp. 55 356–381 (2012)
  9. Yu.A. Stepanyants, A.L. Fabrikant “Propagation of waves in hydrodynamic shear flowsSov. Phys. Usp. 32 783–805 (1989)
  10. S.V. Bulanov, Ja.J. Wilkens et alLaser ion acceleration for hadron therapyPhys. Usp. 57 1149–1179 (2014)
  11. D.N. Razdoburdin, V.V. Zhuravlev “Transient dynamics of perturbations in astrophysical disksPhys. Usp. 58 1031–1058 (2015)
  12. V.M. Fedorov “Earth insolation variation and its incorporation into physical and mathematical climate modelsPhys. Usp. 62 32–45 (2019)
  13. Yu.L. Klimontovich “Nonlinear Brownian motionPhys. Usp. 37 737–766 (1994)
  14. V.S. Anishchenko, A.B. Neiman et alStochastic resonance: noise-enhanced orderPhys. Usp. 42 7–36 (1999)
  15. O.G. Bakunin “Stochastic instability and turbulent transport. Characteristic scales, increments, diffusion coefficientsPhys. Usp. 58 252–285 (2015)
  16. V.G. Boiko, Kh.I. Mogel’ et alFeatures of metastable states in liquid-vapor phase transitionsSov. Phys. Usp. 34 (2) 141–159 (1991)
  17. I.R. Stakhovsky “Scale invariance of shallow seismicity and the prognostic signs of earthquakesPhys. Usp. 60 472–489 (2017)
  18. A.V. Getling “Formation of spatial structures in Rayleigh—Bénard convectionSov. Phys. Usp. 34 (9) 737–776 (1991)
  19. G.M. Zaslavskii, R.Z. Sagdeev et alMinimal chaos, stochastic webs, and structures of quasicrystal symmetrySov. Phys. Usp. 31 887–915 (1988)
  20. V.B. Efimov “Acoustic turbulence of second sound waves in superfluid heliumPhys. Usp. 61 929–951 (2018)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions