Issues

 / 

2016

 / 

November

  

Physics of our days


High-temperature conventional superconductivity

,
Max Planck Institute for Chemistry, Joh.-Joachim-Becher-Weg 27, Mainz, 55128, Germany

Conventional superconductors are described well by the Bardeen—Cooper—Schrieffer (BCS) theory (1957) and its related theories, all of which importantly put no explicit limit on Tc. While this allows in principle for room temperature superconductivity, no such phenomenon has been observed. Since the discovery of superconductivity in 1911, the measured critical temperature of BCS superconductors has not until recently exceeded 39 K. In 2014, hydrogen sulfide at high pressure was experimentally found to show superconductivity at Tc=200 K, a record high value which greatly exceeds that of the previous class of high-temperature superconductors, the cuprates. The superconductivity mechanism in cuprates is not yet explained. Over the period of 25 years, the critical temperature of cuprates has not been increased above 164 K. The paper reviews research on record-high Tc superconductivity in hydrogen sulphide and other hydrides. Prospects for increasing Tc to room temperature are also discussed.

Fulltext pdf (442 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2016.09.037921
Keywords: high-temperature superconductivity, high pressures, hydrides
PACS: 74.20.Fg, 74.62.Fj, 74.70.−b (all)
DOI: 10.3367/UFNe.2016.09.037921
URL: https://ufn.ru/en/articles/2016/11/d/
000396002700004
2-s2.0-85012951083
2016PhyU...59.1154E
Citation: Eremets M I, Drozdov A P "High-temperature conventional superconductivity" Phys. Usp. 59 1154–1160 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 16th, June 2016, 20th, September 2016

Оригинал: Еремец М И, Дроздов А П «Высокотемпературные обычные сверхпроводники» УФН 186 1257–1263 (2016); DOI: 10.3367/UFNr.2016.09.037921

References (115) ↓ Cited by (36) Similar articles (11)

  1. Ginzburg V L, Landau L D Zh. Eksp. Teor. Fiz. 20 1064 (1950); Per. na angl. yaz., Ginzburg V L, Landau L D Landau L D. Collected Papers (Oxford: Pergamon Press, 1965) p. 546
  2. Bardeen J, Cooper L N, Schrieffer J R Phys. Rev. 108 1175 (1957)
  3. Gor’kov L P Zh. Eksp. Teor. Fiz. 37 1407 (1959); Gor’kov L P Sov. Phys. JETP 10 998 (1960)
  4. Abrikosov A A Zh. Eksp. Teor. Fiz. 32 1442 (1957); Abrikosov A A Sov. Phys. JETP 5 1174 (1957)
  5. Gor’kov L P Int. J. Mod. Phys. B 24 3835 (2010)
  6. Gor’kov L P Zh. Eksp. Teor. Fiz. 36 1918 (1959); Gor’kov L P Sov. Phys. JETP 36 1364 (1959)
  7. Abrikosov A A, Gor’kov L P Zh. Eksp. Teor. Fiz. 35 1558 (1959); Abrikosov A A, Gor’kov L P Sov. Phys. JETP 8 1090 (1959)
  8. Migdal A B Zh. Eksp. Teor. Fiz. 35 1438 (1958); Migdal A B Sov. Phys. JETP 7 996 (1958)
  9. Eliashberg G M Zh. Eksp. Teor. Fiz. 38 966 (1960); Eliashberg G M Sov. Phys. JETP 11 696 (1960)
  10. Bogolyubov N N Zh. Eksp. Teor. Fiz. 34 73 (1958); Bogoliubov N N Sov. Phys. JETP 7 51 (1958)
  11. Ginzburg V L Usp. Fiz. Nauk 101 185 (1970); Ginzburg V L Sov. Phys. Usp. 13 335 (1970)
  12. Allen P B, Dynes R C Phys. Rev. B 12 905 (1975)
  13. Kresin V Z, Morawitz H, Wolf S A Superconducting State: Mechanisms And Properties (Oxford: Oxford Univ. Press, 2013)
  14. Ginzburg V L Usp. Fiz. Nauk 167 429 (1997); Ginzburg V L Phys. Usp. 40 407 (1997)
  15. Mazin I I Nature 525 40 (2015)
  16. Bednorz J G, Müller K A Z. Phys. B 64 189 (1986)
  17. Wu M K et al. Phys. Rev. Lett. 58 908 (1987)
  18. Gao L et al. Phys. Rev. B 50 4260(R) (1994)
  19. Rybicki D et al. Nature Commun. 7 11413 (2016)
  20. Drozdov A P et al. Nature 525 73 (2015)
  21. Ashcroft N W Phys. Rev. Lett. 92 187002 (2004)
  22. Ashcroft N W Phys. Rev. Lett. 21 1748 (1968)
  23. Barbee T W (III), Carcía A, Cohen M L Nature 340 369 (1989)
  24. Cudazzo P et al. Phys. Rev. B 81 134505 (2010)
  25. McMahon J M et al. Rev. Mod. Phys. 84 1607 (2012)
  26. Eremets M I, Troyan I A, Drozdov A P arXiv:1601.04479
  27. Pickard C J, Needs R J J. Phys. Condens. Matter 23 053201 (2011)
  28. Pickard C J, Needs R J Phys. Rev. Lett. 97 045504 (2006)
  29. Wang Y et al. Phys. Rev. B 82 094116 (2010)
  30. Oganov A R, Glass C W J. Chem. Phys. 124 244704 (2006)
  31. Goncharenko I et al. Phys. Rev. Lett. 100 045504 (2008)
  32. Pickard C J, Needs R J Phys. Rev. B 76 144114 (2007)
  33. McMillan W L Phys. Rev. 167 331 (1968)
  34. Rousseau B, Bergara A Phys. Rev. B 82 104504 (2010)
  35. Eremets M I et al. Science 319 1506 (2008)
  36. Pickard C J, Needs R J Phys. Rev. Lett. 97 045504 (2006)
  37. Hanfland M et al. Phys. Rev. Lett. 106 095503 (2011)
  38. Needs R J, Pickard C J APL Mater. 4 053210 (2016)
  39. Wang Y, Ma Y J. Chem. Phys. 140 040901 (2014)
  40. Wang H et al. Proc. Natl. Acad. Sci. USA 109 6463 (2012)
  41. Li Y et al. Sci. Rep. 5 9948 (2015)
  42. Gao G et al. Phys. Rev. B 84 064118 (2011)
  43. Hou P et al. RSC Adv. 5 5096 (2015)
  44. Fujihisa H et al. Phys. Rev. B 69 214102 (2004)
  45. Li Y et al. J. Chem. Phys. 140 174712 (2014)
  46. Troyan I et al. Science 351 1303 (2016)
  47. Struzhkin V V Science 351 1260 (2016)
  48. Drozdov A P, Eremets M I, Troyan I A arXiv:1412.0460
  49. Duan D et al. Sci. Rep. 4 6968 (2014)
  50. Strobel T A et al. Phys. Rev. Lett. 107 255503 (2011)
  51. Bernstein N et al. Phys. Rev. B 91 060511(R) (2015)
  52. Duan D et al. Phys. Rev. B 91 180502(R) (2015)
  53. Li Y et al. arXiv:1508.03900
  54. Li Y Phys. Rev. B 93 020103(R) (2016)
  55. Einaga M et al. Nature Phys. 12 835 (2016)
  56. Akashi R et al. Phys. Rev. Lett. 117 075503 (2016); Akashi R et al. arXiv:1512.06680
  57. Quan Y, Pickett W E Phys. Rev. B 93 104526 (2016)
  58. Oh H, Coh S, Cohen M L arXiv:1606.09477
  59. Fu Y et al. Chem. Mater. 28 1746 (2016)
  60. Flores-Livas J A, Sanna A, Gross E K U Eur. Phys. J. B 89 63 (2016)
  61. Errea I et al. Nature 532 81 (2016)
  62. Ba&ňacký P Results Phys. 6 1 (2016)
  63. Sano W et al. Phys. Rev. B 93 094525 (2016); Sano W et al. arXiv:1512.07365
  64. Papaconstantopoulos D A et al. Phys. Rev. B 91 184511 (2015)
  65. Nicol E J, Carbotte J P Phys. Rev. B 91 220507(R) (2015)
  66. Heil C, Boeri L Phys. Rev. B 92 060508(R) (2015)
  67. Gor’kov L P, Kresin V Z Sci. Rep. 6 25608 (2016)
  68. Ge Y, Zhang F, Yao Y arXiv:1507.08525
  69. Flores-Livas J A, Sanna A, Gross E K U arXiv:1501.06336
  70. Errea I et al. Phys. Rev. Lett. 114 157004 (2015)
  71. Degtyarenko N, Mazur E arXiv:1507.05749
  72. Bianconi A, Jarlborg T Nov. Supercond. Mater. 1 37 (2015)
  73. Bianconi A, Jarlborg T arXiv:1507.01093
  74. Akashi R et al. arXiv:1502.00936
  75. Durajski A P, Szcześniak R, Pietronero L Ann. Physik 528 358 (2016)
  76. Ortenzi L, Cappelluti E, Pietronero L Phys. Rev. B 94 064507 (2016)
  77. Gordon E E et al. Angew. Chem. Int. Ed. 55 12941 (2016)
  78. Kudryashov N A, Kutukov A A, Mazur E A arXiv:1607.04624
  79. Akashi R et al. Phys. Rev. B 91 224513 (2015)
  80. Borinaga M et al. Phys. Rev. B 93 174308 (2016)
  81. Goncharov A F et al. Phys. Rev. B 93 174105 (2016)
  82. Drozdov A P, Eremets M I, Troyan I A arXiv:1508.06224
  83. Shamp A et al. J. Am. Chem. Soc. 138 1884 (2016)
  84. Flores-Livas J A et al. Phys. Rev. B 93 020508(R) (2016)
  85. Carbotte J P Rev. Mod. Phys. 62 1027 (1990)
  86. Svistunov V M, Belogolovskii M A, Chernyak O I Usp. Fiz. Nauk 151 31 (1987); Svistunov V M, Belogolovskii M A, Chernyak O I Sov. Phys. Usp. 30 1 (1987)
  87. Zavaritskii N V, Itskevich E S, Voronovskii A N Pis’ma ZhETF 7 271 (1968); Zavaritskii N V, Itskevich E S, Voronovskii A N JETP Lett. 7 211 (1968)
  88. Abrikosov A A, Fal’kovskii L A Zh. Eksp. Teor. Fiz. 40 262 (1961); Abrikosov A A, Fal’kovskii L A Sov. Phys. JETP 13 179 (1961)
  89. Klein M V, Dierker S B Phys. Rev. B 29 4976 (1984)
  90. Goncharov A F, Struzhkin V V J. Raman Spectrosc. 34 532 (2003)
  91. Ge Y, Zhang F, Yao Y Phys. Rev. B 93 224513 (2016)
  92. Matthias B Progress In Low Temperature Physics Vol. 2 (Ed. C J Gorter) (Amsterdam: North-Holland, 1957) p. 138
  93. Cudazzo P et al. Phys. Rev. Lett. 100 257001 (2008)
  94. Tian F et al. Mater. Res. Express 2 046001 (2015)
  95. Moussa J E, Cohen M L Phys. Rev. B 78 064502 (2008)
  96. Kubozono Y et al. J. Phys. Condens. Matter 28 334001 (2016)
  97. Ganin A Y et al. Nature Mater. 7 367 (2008)
  98. Xue M et al. Sci. Rep. 2 389 (2012)
  99. Wen X-D et al. Proc. Natl. Acad. Sci. USA 108 6833 (2011)
  100. Savini G, Ferrari A C, Giustino F Phys. Rev. Lett. 105 037002 (2010)
  101. Loktev V M, Turkowski V J. Low Temp. Phys. 164 264 (2011)
  102. Profeta G, Calandra M, Mauri F Nature Phys. 8 131 (2012)
  103. Zeng T et al. J. Am. Chem. Soc. 137 12639 (2015)
  104. Zipoli F, Bernasconi M, Benedek G Phys. Rev. B 74 205408 (2006)
  105. Lu S et al. Phys. Rev. B 93 104509 (2016)
  106. Halder A, Kresin V V Phys. Rev. B 92 214506 (2015)
  107. Pickard C, Needs R Nature Mater. 7 775 (2008)
  108. Palasyuk T et al. Nature Commun. 5 3460 (2014)
  109. Zurek E et al. Proc. Natl. Acad. Sci. USA 106 17640 (2009)
  110. Edwards P P J. Supercond. 13 933 (2000)
  111. Zurek E, Wen X-D, Hoffmann R J. Am. Chem. Soc. 133 3535 (2011)
  112. Ogg R A (Jr.) Phys. Rev. 70 93 (1946)
  113. Dmitrienko I M, Shchetkin I S Pis’ma ZhETF 18 497 (1973); Dmitrenko I M, Shchetkin I S JETP Lett. 18 292 (1973)
  114. Burkart R, Schindewolf U Phys. Chem. Chem. Phys. 2 3263 (2000)
  115. Syed H M et al. arXiv:1608.01774

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions