Issues

 / 

2016

 / 

November

  

Physics of our days


High-temperature conventional superconductivity

,
Max Planck Institute for Chemistry, Joh.-Joachim-Becher-Weg 27, Mainz, 55128, Germany

Conventional superconductors are described well by the Bardeen—Cooper—Schrieffer (BCS) theory (1957) and its related theories, all of which importantly put no explicit limit on Tc. While this allows in principle for room temperature superconductivity, no such phenomenon has been observed. Since the discovery of superconductivity in 1911, the measured critical temperature of BCS superconductors has not until recently exceeded 39 K. In 2014, hydrogen sulfide at high pressure was experimentally found to show superconductivity at Tc=200 K, a record high value which greatly exceeds that of the previous class of high-temperature superconductors, the cuprates. The superconductivity mechanism in cuprates is not yet explained. Over the period of 25 years, the critical temperature of cuprates has not been increased above 164 K. The paper reviews research on record-high Tc superconductivity in hydrogen sulphide and other hydrides. Prospects for increasing Tc to room temperature are also discussed.

Fulltext pdf (442 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2016.09.037921
Keywords: high-temperature superconductivity, high pressures, hydrides
PACS: 74.20.Fg, 74.62.Fj, 74.70.−b (all)
DOI: 10.3367/UFNe.2016.09.037921
URL: https://ufn.ru/en/articles/2016/11/d/
000396002700004
2-s2.0-85012951083
2016PhyU...59.1154E
Citation: Eremets M I, Drozdov A P "High-temperature conventional superconductivity" Phys. Usp. 59 1154–1160 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 16th, June 2016, 20th, September 2016

Оригинал: Еремец М И, Дроздов А П «Высокотемпературные обычные сверхпроводники» УФН 186 1257–1263 (2016); DOI: 10.3367/UFNr.2016.09.037921

References (115) Cited by (39) ↓ Similar articles (12)

  1. Sadovskii M V J Supercond Nov Magn 38 (6) (2025)
  2. Nurmalasari D, Winarsih S et al Mater. Res. Express 12 (4) 045001 (2025)
  3. Kagan M Yu, Ikhsanov R Sh et al Žurnal èksperimentalʹnoj I Teoretičeskoj Fiziki 166 (1) 89 (2024)
  4. Troyan I A, Semenok D V et al Žurnal èksperimentalʹnoj I Teoretičeskoj Fiziki 166 (1) 74 (2024)
  5. Bondarenko S I, Timofeev V P et al Low Temperature Physics 50 (8) 597 (2024)
  6. Orlov Yu S, Nikolaev S V et al Uspekhi Fizicheskikh Nauk 193 (07) 689 (2023) [Orlov Yu S, Nikolaev S V et al Phys. Usp. 66 (07) 647 (2023)]
  7. Le Godec Ya, Le Floch S Materials 16 (3) 997 (2023)
  8. Pavlov N S, Shein I R et al Jetp Lett. 118 (9) 693 (2023)
  9. Pavlov N S, Shein I R et al Pisʹma V žurnal êksperimentalʹnoj I Teoretičeskoj Fiziki 118 (9-10 (11)) 707 (2023)
  10. Lykov A N Bull. Lebedev Phys. Inst. 50 (6) 218 (2023)
  11. Zhang X, Zhao Ya, Yang G WIREs Comput Mol Sci 12 (3) (2022)
  12. Sadakov A V, Sobolevsky O A, Pudalov V M Uspekhi Fizicheskikh Nauk 192 (12) 1409 (2022) [Sadakov A V, Sobolevsky O A, Pudalov V M Phys. Usp. 65 (12) 1313 (2022)]
  13. Troyan I A, Semenok D V et al Phys. Usp. 65 (07) 748 (2022)
  14. Nekrasov I, Ovchinnikov S J Supercond Nov Magn 35 (4) 959 (2022)
  15. Sadovskii M V Phys. Usp. 65 (07) 724 (2022)
  16. Davydov V N Philosophical Magazine 101 (22) 2377 (2021)
  17. Bondarenko S I, Prokhvatilov A I et al Materials 14 (24) 7900 (2021)
  18. Durajski A P, Wang Ch et al Annalen Der Physik 533 (3) (2021)
  19. Eroshenko Yu N Uspekhi Fizicheskikh Nauk 191 (08) 904 (2021)
  20. Eroshenko Yu N, Sadovskii M V Phys.-Usp. 63 (11) 1157 (2021)
  21. Foo D C W, Conduit G J Phys. Rev. A 103 (4) (2021)
  22. Sadovskii M V Jetp Lett. 113 (9) 581 (2021)
  23. Gebreyohannes M G, Singh P J. Phys. Commun. 5 (10) 105010 (2021)
  24. Zhang X, Zhao Ya et al Matter and Radiation at Extremes 6 (6) (2021)
  25. Minkov V S, Prakapenka V B et al Angewandte Chemie 132 (43) 19132 (2020)
  26. Minkov V S, Prakapenka V B et al Angew Chem Int Ed 59 (43) 18970 (2020)
  27. Talantsev E F Mod. Phys. Lett. B 33 (17) 1950195 (2019)
  28. Foo D C W, Conduit G J Phys. Rev. A 100 (6) (2019)
  29. Talantsev E F Mater. Res. Express 6 (10) 106002 (2019)
  30. Zurek E, Bi T The Journal of Chemical Physics 150 (5) (2019)
  31. Kaplan D, Imry Y Proc. Natl. Acad. Sci. U.S.A. 115 (22) 5709 (2018)
  32. Sun Sh-J, Chou H Physics Letters A 382 (41) 3012 (2018)
  33. Kresin V Z J Supercond Nov Magn 31 (11) 3391 (2018)
  34. Volovik G E Uspekhi Fizicheskikh Nauk 188 (01) 95 (2018) [Volovik G E Phys.-Usp. 61 (1) 89 (2018)]
  35. Gor’kov L P, Kresin V Z Rev. Mod. Phys. 90 (1) (2018)
  36. Kresin V Z J Supercond Nov Magn 31 (3) 611 (2018)
  37. Cao J-J, Gou X-F, Wang T-G Computational Materials Science 150 491 (2018)
  38. Utyuzh A N, Mikheyenkov A V Uspekhi Fizicheskikh Nauk 187 (09) 953 (2017) [Utyuzh A N, Mikheyenkov A V Phys.-Usp. 60 (9) 886 (2017)]
  39. Kresin V Springer Series In Materials Science Vol. High-Tc Copper Oxide Superconductors and Related Novel MaterialsElectron-Lattice Interaction and High Tc Superconductivity255 Chapter 14 (2017) p. 179

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions