Issues

 / 

2016

 / 

October

  

On the 100th anniversary of the birth of V.L. Ginzburg. Methodological notes


Dynamics of solitary waves in ultracold gases in terms of observable quantities

 a, b
a Kapitza Institute of Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 117334, Russian Federation
b Dipartimento di Fisica, Università di Trento and BDC Center, Povo, Trento, I-38050, Italy

In recent years different solitary waves, like solitons, vortex rings, solitonic vortices, and more complicated, were predicted. They can move in superfluid ultracold gases along elongated traps. A theoretical description of the moving demands knowledge of two functions, the inertial mass of the soliton and the effective number of particles. They can be calculated on the basis of a microscopic theory. However, one can express them in the the terms of observable quantities - the phase increment and the depletion of number of particles in soliton. In this note a transparent derivation of the corresponding equations is suggested. The results are applied to the "magnetic soliton" in mixtures of Bose-gases in different spin states,which was predicted recently.

Fulltext pdf (593 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2016.08.037891
PACS: 03.75.Lm, 3.75.Kk, 67.85.De (all)
DOI: 10.3367/UFNe.2016.08.037891
URL: https://ufn.ru/en/articles/2016/10/f/
000391228300005
2-s2.0-85007415265
2016PhyU...59.1028P
Citation: Pitaevskii L P "Dynamics of solitary waves in ultracold gases in terms of observable quantities" Phys. Usp. 59 1028–1033 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 16th, August 2016, 21st, August 2016

Оригинал: Питаевский Л П «Динамика уединённых волн в ультрахолодных газах в терминах наблюдаемых величин» УФН 186 1127–1132 (2016); DOI: 10.3367/UFNr.2016.08.037891

References (18) ↓ Cited by (11) Similar articles (1)

  1. Tsuzuki T J. Low Temp. Phys. 4 441 (1971)
  2. Busch Th, Anglin J R Phys. Rev. Lett. 84 2298 (2000)
  3. Konotop V V, Pitaevskii L Phys. Rev. Lett. 93 240403 (2004)
  4. Komineas S, Papanicolaou N Phys. Rev. A 68 043617 (2003)
  5. Pitaevskii L, Stringari S Bose—Einstein Condensation And Superfluidity (Oxford: Oxford Univ. Press, 2016)
  6. Scott R G, Dalfovo F, Pitaevskii L P, Stringari S Phys. Rev. Lett. 106 185301 (2011)
  7. Pitaevskii L P Zh. Eksp. Teor. Fiz. 146 1252 (2014); Pitaevskii L P JETP 119 1097 (2014); Pitaevskii L P arXiv:1311.4693
  8. Schecter M, Gangardt D M, Kamenev A Ann. Physics 327 639 (2012)
  9. Campbell A S "Mobile impurities in one-dimensional quantum liquids" PhD Thesis (Birmingham: Univ. of Birmingham, 2013)
  10. Shamailov S S, Brand J New J. Phys. 18 075004 (2016)
  11. Qu C, Pitaevskii L P, Stringari S Phys. Rev. Lett. 116 160402 (2016)
  12. Brand J, Reinhardt W P Phys. Rev. A 65 043612 (2002)
  13. Ginzburg V L, Pitaevskii L P Zh. Eksp. Teor. Fiz. 34 1240 (1958); Ginzburg V L, Pitaevskii L P Sov. Phys. JETP 7 858 (1958)
  14. Ginzburg V L Usp. Fiz. Nauk 174 1240 (2004); Ginzburg V L Phys. Usp. 47 1155 (2004)
  15. Dzyaloshinskii I E, Pitaevskii L P Zh. Eksp. Teor. Fiz. 36 1797 (1959); Dzyaloshinskii I E, Pitaevskii L P Sov. Phys. JETP 9 1282 (1959)
  16. Dzyaloshinskii I E, Lifshits E M, Pitaevskii L P Usp. Fiz. Nauk 73 381 (1961); Dzyaloshinskii I E, Lifshitz E M, Pitaevskii L P Sov. Phys. Usp. 4 153 (1961)
  17. Barash Yu S, Ginzburg V L Usp. Fiz. Nauk 143 345 (1984); Barash Yu S, Ginzburg V L Sov. Phys. Usp. 27 467 (1984)
  18. Ginzburg V L Usp. Fiz. Nauk 179 562 (2009); Ginzburg V L Phys. Usp. 52 530 (2009)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions