Issues

 / 

2015

 / 

November

  

Reviews of topical problems


Transient dynamics of perturbations in astrophysical disks

 a, b,  b
a Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
b Lomonosov Moscow State University, Shternberg State Astronomical Institute, Universitetskii prosp. 13, Moscow, 119889, Russian Federation

This paper reviews some aspects of one of the major unsolved problems in understanding astrophysical (in particular, accretion) disks: whether the disk interiors may be effectively viscous in spite of the absence of marnetorotational instability? In this case a rotational homogeneous inviscid flow with a Keplerian angular velocity profile is spectrally stable, making the transient growth of perturbations a candidate mechanism for energy transfer from the regular motion to perturbations. Transient perturbations differ qualitatively from perturbation modes and can grow substantially in shear flows due to the nonnormality of their dynamical evolution operator. Since the eigenvectors of this operator, alias perturbation modes, are mutually nonorthogonal, they can mutually interfere, resulting in the transient growth of their linear combinations. Physically, a growing transient perturbation is a leading spiral whose branches are shrunk as a result of the differential rotation of the flow. This paper discusses in detail the transient growth of vortex shearing harmonics in the spatially local limit as well as methods for identifying the optimal (fastest growth) perturbations. Special attention is given to obtaining such solutions variationally, by integrating the direct and adjoint equations forward and back in time, respectively. The material is presented in a newcomer-friendly style.

Fulltext pdf (903 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0185.201511a.1129
Keywords: hydrodynamics, turbulence, accretion disks
PACS: 02.30.−f, 02.60.Pn, 47.32.C−, 97.10.Gz, 97.82.Jw, 98.62.Mw (all)
DOI: 10.3367/UFNe.0185.201511a.1129
URL: https://ufn.ru/en/articles/2015/11/a/
000369654900001
2015PhyU...58.1031R
Citation: Razdoburdin D N, Zhuravlev V V "Transient dynamics of perturbations in astrophysical disks" Phys. Usp. 58 1031–1058 (2015)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 18th, May 2015, revised: 1st, September 2015, 8th, September 2015

Оригинал: Раздобурдин Д Н, Журавлёв В В «Транзиентная динамика возмущений в астрофизических дисках» УФН 185 1129–1161 (2015); DOI: 10.3367/UFNr.0185.201511a.1129

References (144) Cited by (11) Similar articles (20) ↓

  1. M.V. Kalashnik, M.V. Kurgansky, O.G. Chkhetiani “Baroclinic instability in geophysical fluid dynamicsPhys. Usp. 65 1039–1070 (2022)
  2. K.V. Koshel, S.V. Prants “Chaotic advection in the oceanPhys. Usp. 49 1151–1178 (2006)
  3. O.G. Onishchenko, O.A. Pokhotelov et alStructure and dynamics of concentrated mesoscale vortices in planetary atmospheresPhys. Usp. 63 683–697 (2020)
  4. B.M. Smirnov “Electrical cycle in the Earth’s atmospherePhys. Usp. 57 1041–1062 (2014)
  5. A.N. Vulfson, O.O. Borodin “The system of convective thermals as a generalized ensemble of Brownian particlesPhys. Usp. 59 109–120 (2016)
  6. O.G. Onishchenko, O.A. Pokhotelov, N.M. Astaf’eva “Generation of large-scale eddies and zonal winds in planetary atmospheresPhys. Usp. 51 577–589 (2008)
  7. V.M. Fedorov “Problems of parameterization of the radiation block in physical and mathematical climate models and the possibility of their solutionPhys. Usp. 66 914–930 (2023)
  8. F.V. Dolzhanskii, V.A. Krymov, D.Yu. Manin “Stability and vortex structures of quasi-two-dimensional shear flowsSov. Phys. Usp. 33 (7) 495–520 (1990)
  9. Yu.A. Stepanyants, A.L. Fabrikant “Propagation of waves in hydrodynamic shear flowsSov. Phys. Usp. 32 783–805 (1989)
  10. L.Kh. Ingel, M.V. Kalashnik “Nontrivial features in the hydrodynamics of seawater and other stratified solutionsPhys. Usp. 55 356–381 (2012)
  11. A.M. Fridman, D.V. Bisikalo “The nature of accretion disks of close binary stars: overreflection instability and developed turbulencePhys. Usp. 51 551–576 (2008)
  12. A.A. Chernyshov, K.V. Karelsky, A.S. Petrosyan “Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmasPhys. Usp. 57 421–452 (2014)
  13. S.V. Bulanov, Ja.J. Wilkens et alLaser ion acceleration for hadron therapyPhys. Usp. 57 1149–1179 (2014)
  14. V.M. Fedorov “Earth insolation variation and its incorporation into physical and mathematical climate modelsPhys. Usp. 62 32–45 (2019)
  15. A.G. Zhilkin, D.V. Bisikalo, A.A. Boyarchuk “Flow structure in magnetic close binary starsPhys. Usp. 55 115–136 (2012)
  16. V.S. Beskin, V.I. Krauz, S.A. Lamzin “Laboratory modeling of jets from young stars using plasma focus facilitiesPhys. Usp. 66 327–359 (2023)
  17. A.S. Monin “Hydrodynamic instabilitySov. Phys. Usp. 29 843–868 (1986)
  18. V.V. Zhuravlev “Analytical models of relativistic accretion disksPhys. Usp. 58 527–555 (2015)
  19. A.I. Zhakin “Electrohydrodynamics of charged surfacesPhys. Usp. 56 141–163 (2013)
  20. A.M. Fridman “Prediction and discovery of extremely strong hydrodynamic instabilities due to a velocity jump: theory and experimentsPhys. Usp. 51 213–229 (2008)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions