Issues

 / 

2014

 / 

September

  

Methodological notes


Coherent and semiclassical states of a free particle

 a,  b, a, c,  d
a Tomsk State University, prosp. Lenina 36, Tomsk, 634050, Russian Federation
b Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
c Universidade de São Paulo, Instituto de Física, São Paulo, Brazil
d Universidade de São Paulo, R. da Reitoria 109, São Paulo, 05508-900, Brazil

Coherent states (CS) were first introduced and studied in detail for bound motion, discrete spectrum system like the harmonic oscillator and similar systems with a quadratic Hamiltonian. However, the problem of constructing CS has not yet received detailed investigation for the simplest and physically important case of a free particle for which, besides being physically important, the CS problem is of didactic value in teaching quantum mechanics where CSs can be considered as examples of wave packets representing semiclassical motion. In this paper we follow essentially the Malkin—Dodonov—Man’ko method to construct the CS of a free nonrelativistic particle. We give a detailed discussion of the properties of the CSs obtained, in particular, the completeness relations, the minimization of uncertainty relations and the evolution of the corresponding probability density. We describe the physical conditions under which free particle CSs can be considered as semiclassical states.

Fulltext is available at IOP
PACS: 03.65.−w
DOI: 10.3367/UFNe.0184.201409c.0961
URL: https://ufn.ru/en/articles/2014/9/c/
Citation: Bagrov V G, Gitman D M, Pereira A S "Coherent and semiclassical states of a free particle" Phys. Usp. 57 891–896 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 29th, January 2014, 26th, March 2014

Оригинал: Багров В Г, Гитман Д М, Перейра А С «Когерентные и полуклассические состояния свободной частицы» УФН 184 961–966 (2014); DOI: 10.3367/UFNr.0184.201409c.0961

References (18) Cited by (13) Similar articles (20) ↓

  1. N.P. Klepikov “Types of transformations used in physics, and particle ’exchange’30 644–648 (1987)
  2. E.D. Trifonov “On the spin-statistics theorem60 621–622 (2017)
  3. S.V. Petrov “Was Sommerfeld wrong? (To the history of the appearance of spin in relativistic wave equations)63 721–724 (2020)
  4. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentally55 796–807 (2012)
  5. G.V. Shpatakovskaya “Semiclassical method of analysis and estimation of the orbital binding energies in many-electron atoms and ions62 186–197 (2019)
  6. I.F. Ginzburg “Particles in finite and infinite one-dimensional chains63 395–406 (2020)
  7. G.A. Vardanyan, G.S. Mkrtchyan “A solution to the density matrix equation33 (12) 1072–1072 (1990)
  8. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitter57 1022–1034 (2014)
  9. A.A. Grib “On the problem of the interpretation of quantum physics56 1230–1244 (2013)
  10. V.K. Ignatovich “The neutron Berry phase56 603–604 (2013)
  11. B.I. Sturman “Ballistic and shift currents in the bulk photovoltaic effect theory63 407–411 (2020)
  12. S.V. Goupalov “Classical problems with the theory of elasticity and the quantum theory of angular momentum63 57–65 (2020)
  13. K.V. Chukbar “Harmony in many-particle quantum problem61 389–396 (2018)
  14. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particles42 573–590 (1999)
  15. V.I. Bodnarchuk, L.S. Davtyan, D.A. Korneev “Geometrical phase effects in neutron optics39 169–177 (1996)
  16. E.E. Nikitin, L.P. Pitaevskii “Imaginary time and the Landau method of calculating quasiclassical matrix elements36 (9) 851–853 (1993)
  17. A.S. Tarnovskii “The Bohr-Sommerfeld quantization rule and quantum mechanics33 (1) 86–86 (1990)
  18. K.S. Vul’fson “Angular momentum of electromagnetic waves30 724–728 (1987)
  19. V.L. Ginzburg “The laws of conservation of energy and momentum in emission of electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamics16 434–439 (1973)
  20. P. Paradoksov “How quantum mechanics helps us understand classical mechanics9 618–620 (1967)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions