Issues

 / 

2014

 / 

September

  

Methodological notes


Coherent and semiclassical states of a free particle

 a,  b, a, c,  d
a Tomsk State University, prosp. Lenina 36, Tomsk, 634050, Russian Federation
b Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
c Universidade de São Paulo, Instituto de Física, São Paulo, Brazil
d Universidade de São Paulo, R. da Reitoria 109, São Paulo, 05508-900, Brazil

Coherent states (CS) were first introduced and studied in detail for bound motion, discrete spectrum system like the harmonic oscillator and similar systems with a quadratic Hamiltonian. However, the problem of constructing CS has not yet received detailed investigation for the simplest and physically important case of a free particle for which, besides being physically important, the CS problem is of didactic value in teaching quantum mechanics where CSs can be considered as examples of wave packets representing semiclassical motion. In this paper we follow essentially the Malkin—Dodonov—Man’ko method to construct the CS of a free nonrelativistic particle. We give a detailed discussion of the properties of the CSs obtained, in particular, the completeness relations, the minimization of uncertainty relations and the evolution of the corresponding probability density. We describe the physical conditions under which free particle CSs can be considered as semiclassical states.

Fulltext pdf (506 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0184.201409c.0961
PACS: 03.65.−w
DOI: 10.3367/UFNe.0184.201409c.0961
URL: https://ufn.ru/en/articles/2014/9/c/
000346959600003
2-s2.0-84928807239
2014PhyU...57..891B
Citation: Bagrov V G, Gitman D M, Pereira A S "Coherent and semiclassical states of a free particle" Phys. Usp. 57 891–896 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 29th, January 2014, 26th, March 2014

Оригинал: Багров В Г, Гитман Д М, Перейра А С «Когерентные и полуклассические состояния свободной частицы» УФН 184 961–966 (2014); DOI: 10.3367/UFNr.0184.201409c.0961

References (18) Cited by (34) Similar articles (20) ↓

  1. A.N. Rubtsov “On the question of measurement in quantum mechanicsPhys. Usp. 66 734–740 (2023)
  2. N.P. Klepikov “Types of transformations used in physics, and particle ’exchange’Sov. Phys. Usp. 30 644–648 (1987)
  3. E.D. Trifonov “On the spin-statistics theoremPhys. Usp. 60 621–622 (2017)
  4. S.V. Petrov “Was Sommerfeld wrong? (To the history of the appearance of spin in relativistic wave equations)Phys. Usp. 63 721–724 (2020)
  5. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentallyPhys. Usp. 55 796–807 (2012)
  6. G.V. Shpatakovskaya “Semiclassical method of analysis and estimation of the orbital binding energies in many-electron atoms and ionsPhys. Usp. 62 186–197 (2019)
  7. I.F. Ginzburg “Particles in finite and infinite one-dimensional chainsPhys. Usp. 63 395–406 (2020)
  8. G.A. Vardanyan, G.S. Mkrtchyan “A solution to the density matrix equationSov. Phys. Usp. 33 (12) 1072–1072 (1990)
  9. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitterPhys. Usp. 57 1022–1034 (2014)
  10. V.K. Ignatovich “The neutron Berry phasePhys. Usp. 56 603–604 (2013)
  11. A.A. Grib “On the problem of the interpretation of quantum physicsPhys. Usp. 56 1230–1244 (2013)
  12. S.V. Goupalov “Classical problems with the theory of elasticity and the quantum theory of angular momentumPhys. Usp. 63 57–65 (2020)
  13. B.I. Sturman “Ballistic and shift currents in the bulk photovoltaic effect theoryPhys. Usp. 63 407–411 (2020)
  14. K.V. Chukbar “Harmony in many-particle quantum problemPhys. Usp. 61 389–396 (2018)
  15. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  16. V.I. Bodnarchuk, L.S. Davtyan, D.A. Korneev “Geometrical phase effects in neutron opticsPhys. Usp. 39 169–177 (1996)
  17. E.E. Nikitin, L.P. Pitaevskii “Imaginary time and the Landau method of calculating quasiclassical matrix elementsPhys. Usp. 36 (9) 851–853 (1993)
  18. A.S. Tarnovskii “The Bohr-Sommerfeld quantization rule and quantum mechanicsSov. Phys. Usp. 33 (1) 86–86 (1990)
  19. K.S. Vul’fson “Angular momentum of electromagnetic wavesSov. Phys. Usp. 30 724–728 (1987)
  20. V.L. Ginzburg “The laws of conservation of energy and momentum in emission of electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamicsSov. Phys. Usp. 16 434–439 (1973)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions