Issues

 / 

2014

 / 

September

  

Methodological notes


Coherent and semiclassical states of a free particle

 a,  b, a, c,  d
a Tomsk State University, prosp. Lenina 36, Tomsk, 634050, Russian Federation
b Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
c Universidade de São Paulo, Instituto de Física, São Paulo, Brazil
d Universidade de São Paulo, R. da Reitoria 109, São Paulo, 05508-900, Brazil

Coherent states (CS) were first introduced and studied in detail for bound motion, discrete spectrum system like the harmonic oscillator and similar systems with a quadratic Hamiltonian. However, the problem of constructing CS has not yet received detailed investigation for the simplest and physically important case of a free particle for which, besides being physically important, the CS problem is of didactic value in teaching quantum mechanics where CSs can be considered as examples of wave packets representing semiclassical motion. In this paper we follow essentially the Malkin—Dodonov—Man’ko method to construct the CS of a free nonrelativistic particle. We give a detailed discussion of the properties of the CSs obtained, in particular, the completeness relations, the minimization of uncertainty relations and the evolution of the corresponding probability density. We describe the physical conditions under which free particle CSs can be considered as semiclassical states.

Fulltext is available at IOP
PACS: 03.65.−w
DOI: 10.3367/UFNe.0184.201409c.0961
URL: https://ufn.ru/en/articles/2014/9/c/
Citation: Bagrov V G, Gitman D M, Pereira A S "Coherent and semiclassical states of a free particle" Phys. Usp. 57 891–896 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 29th, January 2014, 26th, March 2014

Оригинал: Багров В Г, Гитман Д М, Перейра А С «Когерентные и полуклассические состояния свободной частицы» УФН 184 961–966 (2014); DOI: 10.3367/UFNr.0184.201409c.0961

References (18) Cited by (13) ↓ Similar articles (20)

  1. Biswas K, Saha J P, Patra P Indian J Phys (2020)
  2. Pimentel G L, Stout J J. High Energ. Phys. 2020 (5) (2020)
  3. Koussa W, Attia M, Maamache M Journal Of Mathematical Physics 61 042101 (2020)
  4. Zelaya K, Rosas-Ortiz O Phys. Scr. 95 064004 (2020)
  5. Nagiyev Sh M, Ahmadov A I et al Russ Phys J 61 2173 (2019)
  6. Jafarov E I, Nagiyev S M Springer Proceedings In Mathematics & Statistics Vol. Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 2255 Chapter 34 (2018) p. 431
  7. Nagiyev Sh M Theor Math Phys 194 313 (2018)
  8. Pereira A S Braz J Phys 48 286 (2018)
  9. Adorno T C, Pereira A S Russ Phys J 61 133 (2018)
  10. Tessarotto M, Cremaschini C Found Phys 46 1022 (2016)
  11. Maamache M, Khatir A et al Sci Rep 6 (1) (2016)
  12. Maamache M, Bouguerra Ya, Choi Je R Prog. Theor. Exp. Phys. 2016 063A01 (2016)
  13. Bagrov V G, Gitman D M, Pereira A S Braz J Phys 45 369 (2015)

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions