Issues

 / 

2014

 / 

August

  

Reviews of topical problems


Atmospheres and radiating surfaces of neutron stars

 a, b, c
a Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation
b Centre de Recherche Astrophysique de Lyon (CNRS, UMR 5574); Ecole Normale Supérieure de Lyon; Université de Lyon, Université Lyon 1; Observatoire de Lyon, 9 avenue Charles André, Saint-Genis-Laval, 69230, France
c The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, Pulkovskoe shosse 65/1, St. Petersburg, 196140, Russian Federation

The early 21st century witnesses a dramatic rise in the study of thermal radiation of neutron stars. Modern space telescopes have provided a wealth of valuable information which, when properly interpreted, can elucidate the physics of superdense matter in the interior of these stars. This interpretation is necessarily based on the theory of formation of neutron star thermal spectra, which, in turn, is based on plasma physics and on the understanding of radiative processes in stellar photospheres. In this paper, the current status of the theory is reviewed with particular emphasis on neutron stars with strong magnetic fields. In addition to the conventional deep (semi-infinite) atmospheres, radiative condensed surfaces of neutron stars and ’thin’ (finite) atmospheres are considered.

Fulltext pdf (1.1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.0184.201408a.0793
PACS: 97.10.Ex, 97.10.Ld, 97.60.Jd (all)
DOI: 10.3367/UFNe.0184.201408a.0793
URL: https://ufn.ru/en/articles/2014/8/a/
000345112400001
2-s2.0-84911484573
2014PhyU...57..735P
Citation: Potekhin A Y "Atmospheres and radiating surfaces of neutron stars" Phys. Usp. 57 735–770 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 19th, September 2013, revised: 10th, November 2013, 12th, November 2013

Îðèãèíàë: Ïîòåõèí À Þ «Àòìîñôåðû è èçëó÷àþùèå ïîâåðõíîñòè íåéòðîííûõ çâ¸çä» ÓÔÍ 184 793–832 (2014); DOI: 10.3367/UFNr.0184.201408a.0793

References (401) Cited by (100) ↓ Similar articles (20)

  1. Moldabekov Zh, Vorberger Ja, Dornheim T Progress In Particle And Nuclear Physics 140 104144 (2025)
  2. Li H-B, Gao Y et al Universe 10 157 (2024)
  3. Yadav Sh, Mishra M, Sarkar T G Eur. Phys. J. C 84 (7) (2024)
  4. Oks E New Astronomy 113 102275 (2024)
  5. Yadav Sh, Mishra M et al Eur. Phys. J. C 84 (3) (2024)
  6. Kelly R M E, González-Caniulef D et al 534 1355 (2024)
  7. Ascenzi S, Graber V, Rea N Astroparticle Physics 158 102935 (2024)
  8. Dittmann A J, Miller M C et al ApJ 974 295 (2024)
  9. Iqbal Z, Shah H A et al Chaos, Solitons & Fractals 189 115651 (2024)
  10. Nättilä J, Kajava Ja J E Handbook of X-ray and Gamma-ray Astrophysics Chapter 105 (2024) p. 4177
  11. Heinke C Astron Nachr (2024)
  12. Bogdanov S, Ho W C G ApJ 969 53 (2024)
  13. Ho W C G, Pol N et al Publ. Astron. Soc. Aust. 41 (2024)
  14. Kashirina N, Kashyrina Ya et al Molecular Physics 121 (6) (2023)
  15. Farrell D, Baldi P et al J. Cosmol. Astropart. Phys. 2023 016 (2023)
  16. Nättilä J, Kajava Ja J E Handbook of X-ray and Gamma-ray Astrophysics Chapter 105-1 (2023) p. 1
  17. Farrell D, Baldi P et al J. Cosmol. Astropart. Phys. 2023 022 (2023)
  18. Farrell D, Baldi P et al Astron Nachr 344 (1-2) (2023)
  19. Salmi T, Vinciguerra S et al ApJ 956 138 (2023)
  20. Philippov A, Kramer M Annu. Rev. Astron. Astrophys. 60 495 (2022)
  21. Pelle J, Reula O et al 515 1316 (2022)
  22. Hoyos C, Jokela N, Vuorinen A Progress In Particle And Nuclear Physics 126 103972 (2022)
  23. Zhuravlev A, Taverna R, Turolla R ApJ 925 80 (2022)
  24. Pires A M, Motch C et al A&A 666 A148 (2022)
  25. Caiazzo I, González-Caniulef D et al 514 5024 (2022)
  26. Tanashkin A S, Karpova A V et al 516 13 (2022)
  27. Suleimanov V F, Mushtukov A A et al 517 4022 (2022)
  28. Zhuravlev A, Popov S, Pshirkov M Physics Letters B 821 136615 (2021)
  29. Bogdanov S, Dittmann A J et al ApJL 914 L15 (2021)
  30. De Grandis D, Taverna R et al ApJ 914 118 (2021)
  31. Ho W C G, Zhao Yu et al 506 5015 (2021)
  32. Yakovlev D Universe 7 395 (2021)
  33. Kontorovich V M 47 596 (2021)
  34. Yamaguchi T, Koura H et al Progress In Particle And Nuclear Physics 120 103882 (2021)
  35. Yakovlev D G 506 4593 (2021)
  36. Villalba-Chávez S, Shabad A E, Müller C Eur. Phys. J. C 81 (4) (2021)
  37. Miller M C, Lamb F K et al ApJL 918 L28 (2021)
  38. Morley P D Astrophys Space Sci 365 (3) (2020)
  39. de Lima R C R, Coelho Ja G et al ApJ 889 165 (2020)
  40. Potekhin A Y, Zyuzin D A et al 496 5052 (2020)
  41. Barchas J A, Hu K, Baring M G 500 5369 (2020)
  42. Taverna R, Turolla R et al 492 5057 (2020)
  43. Vera R M, Rohrmann R D A&A 635 A180 (2020)
  44. Hebbar P R, Heinke C O, Ho W C G 491 1585 (2020)
  45. Calder A C, Karpov P I et al J. Phys.: Conf. Ser. 1623 012003 (2020)
  46. Bogdanov S, Lamb F K et al ApJL 887 L26 (2019)
  47. Pintore F, Mereghetti S et al 483 3832 (2019)
  48. Caiazzo I, Heyl Je, Turolla R Astrophysics And Space Science Library Vol. Astronomical Polarisation from the Infrared to Gamma RaysPolarimetry of Magnetars and Isolated Neutron Stars460 Chapter 12 (2019) p. 301
  49. González-Caniulef D, Guillot S, Reisenegger A 490 5848 (2019)
  50. González-Caniulef D, Zane S et al 483 599 (2019)
  51. (XIAMEN-CUSTIPEN WORKSHOP ON THE EQUATION OF STATE OF DENSE NEUTRON-RICH MATTER IN THE ERA OF GRAVITATIONAL WAVE ASTRONOMY) Vol. XIAMEN-CUSTIPEN WORKSHOP ON THE EQUATION OF STATE OF DENSE NEUTRON-RICH MATTER IN THE ERA OF GRAVITATIONAL WAVE ASTRONOMYHow to test the two-families scenarioPrasantaCharAlessandroDragoGiuseppePagliara2127 (2019) p. 020026
  52. Rigoselli M, Mereghetti S et al ApJ 872 15 (2019)
  53. Bogdanov S, Guillot S et al ApJL 887 L25 (2019)
  54. Malacaria Ch, Bogdanov S et al ApJ 880 74 (2019)
  55. Wijngaarden M J P, Ho W C G et al 484 974 (2019)
  56. (XIAMEN-CUSTIPEN WORKSHOP ON THE EQUATION OF STATE OF DENSE NEUTRON-RICH MATTER IN THE ERA OF GRAVITATIONAL WAVE ASTRONOMY) Vol. XIAMEN-CUSTIPEN WORKSHOP ON THE EQUATION OF STATE OF DENSE NEUTRON-RICH MATTER IN THE ERA OF GRAVITATIONAL WAVE ASTRONOMYCooling of the Cassiopeia A neutron star and the effect of diffusive nuclear burningWynn C. G.HoM. J. P.WijngaardenPhilipChangCraig O.HeinkeDanyPageMikhailBeznogovDaniel J.Patnaude2127 (2019) p. 020007
  57. Miller M C, Lamb F K et al ApJL 887 L24 (2019)
  58. Wei J-B, Figura A et al J. Phys. G: Nucl. Part. Phys. 46 034001 (2019)
  59. Providência C, Fortin M et al Front. Astron. Space Sci. 6 (2019)
  60. Bogovalov S V, Contopoulos I et al 476 4213 (2018)
  61. Meisel Z, Deibel A et al J. Phys. G: Nucl. Part. Phys. 45 093001 (2018)
  62. Alsing Ju, Silva H O, Berti E 478 1377 (2018)
  63. Beloin S, Han S et al Phys. Rev. C 97 (1) (2018)
  64. Pihajoki P, Mannerkoski M et al ApJ 863 8 (2018)
  65. Tepliakov N V, Vovk T A et al ApJ 857 41 (2018)
  66. Batra N D, Nunna K P, Banik S Phys. Rev. C 98 (3) (2018)
  67. Ofengeim D, Zyuzin D Particles 1 194 (2018)
  68. Fiorella B G, Fantina A F Astrophysics And Space Science Library Vol. The Physics and Astrophysics of Neutron StarsNuclear Equation of State for Compact Stars and Supernovae457 Chapter 6 (2018) p. 255
  69. Morley P D Astrophys Space Sci 363 (1) (2018)
  70. Schmitt A, Shternin P Astrophysics And Space Science Library Vol. The Physics and Astrophysics of Neutron StarsReaction Rates and Transport in Neutron Stars457 Chapter 9 (2018) p. 455
  71. Beskin V S Phys.-Usp. 61 353 (2018)
  72. Mushtukov A A, Verhagen P A et al 474 5425 (2018)
  73. Suleimanov V F, Klochkov D et al A&A 600 A43 (2017)
  74. Mignani R P, Testa V et al Mon. Not. R. Astron. Soc. 465 492 (2017)
  75. Beznogov M V, Yakovlev D G et al J. Phys.: Conf. Ser. 929 012010 (2017)
  76. Ofengeim D D, Yakovlev D G 467 3598 (2017)
  77. Popov S B, Taverna R, Turolla R Mon. Not. R. Astron. Soc. 464 4390 (2017)
  78. Coti Z F, Rea N et al 471 1819 (2017)
  79. Oertel M, Hempel M et al Rev. Mod. Phys. 89 (1) (2017)
  80. Beznogov M V, Fortin M et al Mon. Not. R. Astron. Soc. 463 1307 (2016)
  81. Hamil O, Stone N  J, Stone J  R Phys. Rev. D 94 (6) (2016)
  82. Bogdanov S, Heinke C O et al ApJ 831 184 (2016)
  83. Fortin M, Providência C et al Phys. Rev. C 94 (3) (2016)
  84. Haensel P, Bejger M et al Eur. Phys. J. A 52 (3) (2016)
  85. Mushtukov A A, Nagirner D I, Poutanen Ju Phys. Rev. D 93 (10) (2016)
  86. Garasev M A, Derishev E V et al Mon. Not. R. Astron. Soc. 459 1847 (2016)
  87. Suleimanov V F, Poutanen J et al Eur. Phys. J. A 52 (2) (2016)
  88. Potekhin A Y, Pons J A, Page D Space Sciences Series Of ISSI Vol. The Strongest Magnetic Fields in the UniverseNeutron Stars—Cooling and Transport54 Chapter 8 (2016) p. 245
  89. González C D, Zane S et al Mon. Not. R. Astron. Soc. 459 3585 (2016)
  90. Loudon R Proc. R. Soc. A. 472 20150534 (2016)
  91. Turolla R, Zane S, Watts A L Rep. Prog. Phys. 78 116901 (2015)
  92. Beznogov M V, Yakovlev D G 447 1598 (2015)
  93. Oliveira A  M, Velten H  E  S et al Phys. Rev. D 92 (4) (2015)
  94. Ho W C G, Espinoza C M et al Sci. Adv. 1 (9) (2015)
  95. Potekhin A Y, De Luca A, Pons J A Space Sci Rev 191 171 (2015)
  96. Belyaev V B, Ricci P et al Nuclear Physics A 937 17 (2015)
  97. Potekhin A Y, Pons J A, Page D Space Sci Rev 191 239 (2015)
  98. Fortin M, Zdunik J L et al A&A 576 A68 (2015)
  99. Kotera K, Amato E, Blasi P J. Cosmol. Astropart. Phys. 2015 026 (2015)
  100. Potekhin A Y, Chabrier G, Ho W C G A&A 572 A69 (2014)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions