Issues

 / 

2014

 / 

July

  

From the current literature


Production of exotic states of matter with the use of X-rays generated by focusing a petawatt laser pulse onto a solid target

, , ,
Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation

The possibility is discussed of using optical laser radiation with a flux density of > 1020 W cm−2 to create an ultraintense X-ray source capable of producing polychromatic radiation with a power flux density of 1019 W cm−2 or higher. The X-ray radiation of so high an intensity permits not only transforming a condensed target to a plasma state but also obtaining an exotic plasma state with a high density of hollow ions. Currently still not in wide use and available in only a few laboratories in the world, lasers with a flux density of about 1020 W cm−2 are more compact and lower-cost compared to free-electron X-ray lasers or lasers used for the indirect heating of fusion targets. The source under discussion can produce by far higher X-ray intensities than plasma X-ray lasers of a similar scale.

Fulltext is available at IOP
PACS: 32.80.−t, 52.27.Ny, 52.38.Ph, 52.70.La (all)
DOI: 10.3367/UFNe.0184.201407e.0759
URL: https://ufn.ru/en/articles/2014/7/d/
Citation: Pikuz S A (Jr.), Faenov A Ya, Skobelev I Yu, Fortov V E "Production of exotic states of matter with the use of X-rays generated by focusing a petawatt laser pulse onto a solid target" Phys. Usp. 57 702–707 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, September 2013, revised: 15th, November 2013, 19th, November 2013

Оригинал: Пикуз С А (мл.), Фаенов А Я, Скобелев И Ю, Фортов В Е «Создание экзотических состояний вещества с помощью рентгеновского излучения, генерируемого при фокусировке петаваттного лазерного импульса на твердотельные мишени» УФН 184 759–765 (2014); DOI: 10.3367/UFNr.0184.201407e.0759

References (61) Cited by (20) ↓ Similar articles (7)

  1. Golovin D O, Alkhimova M A et al J. Phys.: Conf. Ser. 1787 012028 (2021)
  2. Makarov S S, Zhvania I A et al High Temp 58 615 (2020)
  3. Martynenko A S, Skobelev I Yu, Pikuz S A Appl. Phys. B 125 (2) (2019)
  4. Lazareva G G, Arakcheev A S et al Smart Innovation, Systems And Technologies Vol. Smart Modeling for Engineering SystemsNumerical Simulation of Tungsten Melting Under Fusion Reactor-Relevant High-Power Pulsed Heating133 Chapter 5 (2019) p. 41
  5. Alkhimova M A, Faenov A Ya et al J. Phys.: Conf. Ser. 946 012018 (2018)
  6. Fan X, Li Y et al J. Phys. B: At. Mol. Opt. Phys. 51 175001 (2018)
  7. Lazareva G G, Arakcheev A S et al (AIP Conference Proceedings) Vol. 2025 (2018) p. 080005
  8. Faenov A Ya, Colgan J et al Springer Proceedings In Physics Vol. X-Ray Lasers 2016Ultra-intense X-Ray Radiation Photopumping of Exotic States of Matter by Relativistic Laser–Plasma in the Radiation-Dominated Kinetic Regime (RDKR)202 Chapter 23 (2018) p. 149
  9. Alkhimova M A, Faenov A Ya et al Opt. Express 25 29501 (2017)
  10. Ryazantsev S N, Skobelev I Yu et al Plasma Phys. Rep. 43 480 (2017)
  11. Zhao J C, Cao L H et al Laser Part. Beams 35 483 (2017)
  12. Pikuz S A, Skobelev I Yu et al Jetp Lett. 105 13 (2017)
  13. Ryazantsev S N, Skobelev I Yu et al J. Phys.: Conf. Ser. 774 012116 (2016)
  14. Ryazantsev S N, Skobelev I Yu et al Physics Of Plasmas 23 123301 (2016)
  15. Skobelev I Yu, Loboda P A et al Opt. Spectrosc. 120 507 (2016)
  16. Colgan J, Faenov A Ya et al EPL 114 35001 (2016)
  17. Pikuz S A, Skobelev I Yu et al High Temp 54 428 (2016)
  18. Alkhimova M A, Pikuz S A et al Bull. Lebedev Phys. Inst. 43 291 (2016)
  19. Ryazantsev S N, Skobelev I Yu et al Jetp Lett. 102 707 (2015)
  20. Nizhankovskii S V, Sidel’nikova N S, Baranov V V Phys. Solid State 57 781 (2015)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions