Issues

 / 

2014

 / 

May

  

Methodological notes


Nonlinear dynamics of the rattleback: a nonholonomic model

 a, b,  c, d,  e
a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034, Russian Federation
b Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
c Institute of Computer Science, ul. Universitetskaya 1, Izhevsk, 426034, Russian Federation
d Lobachevsky State University of Nizhny Novgorod, Faculty of Computational Mathematics and Cybernetics, pr. Gagarina 23, Nizhny Novgorod, 603950, Russian Federation
e Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, ul. Zelenaya 38, Saratov, 410019, Russian Federation

For a solid body of convex form moving on a rough horizontal plane that is known as a rattleback, numerical simulations are used to discuss and illustrate dynamical phenomena that are characteristic of the motion due to a nonholonomic nature of the mechanical system; the relevant feature is the nonconservation of the phase volume in the course of the dynamics. In such a system, a local compression of the phase volume can produce behavior features similar to those exhibited by dissipative systems, such as stable equilibrium points corresponding to stationary rotations; limit cycles (rotations with oscillations); and strange attractors. A chart of dynamical regimes is plotted in a plane whose axes are the total mechanical energy and the relative angle between the geometric and dynamic principal axes of the body. The transition to chaos through a sequence of Feigenbaum period doubling bifurcations is demonstrated. A number of strange attractors are considered, for which phase portraits, Lyapunov exponents, and Fourier spectra are presented.

Fulltext pdf (755 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0184.201405b.0493
PACS: 05.45.−a, 45.10.−b, 45.40.−f (all)
DOI: 10.3367/UFNe.0184.201405b.0493
URL: https://ufn.ru/en/articles/2014/5/b/
000340732000002
2-s2.0-84905968176
2014PhyU...57..453B
Citation: Borisov A V, Kazakov A O, Kuznetsov S P "Nonlinear dynamics of the rattleback: a nonholonomic model" Phys. Usp. 57 453–460 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 29th, August 2013, revised: 1st, October 2013, 8th, October 2013

Оригинал: Борисов А В, Казаков А О, Кузнецов С П «Нелинейная динамика кельтского камня: неголономная модель» УФН 184 493–500 (2014); DOI: 10.3367/UFNr.0184.201405b.0493

References (36) Cited by (35) ↓ Similar articles (17)

  1. García-Agúndez A, García-Vallejo D, Freire E Nonlinear Dyn 103 557 (2021)
  2. Agúndez A G, García-Vallejo D, Freire E International Journal Of Mechanical Sciences 198 106392 (2021)
  3. Gonchenko S V, Gonchenko A S, Kazakov A O Trudy Matematicheskogo Instituta Imeni V. A. Steklova 308 135 (2020)
  4. Tudoran R M, Gîrban A Journal Of Mathematical Analysis And Applications 488 124066 (2020)
  5. Gonchenko S V, Gonchenko A S, Kazakov A O Proc. Steklov Inst. Math. 308 125 (2020)
  6. Gonchenko A S, Gonchenko S V et al Radiophys Quantum El 61 773 (2019)
  7. Garashchuk I R, Sinelshchikov D I et al 29 (6) (2019)
  8. Kruglov V P, Kuznetsov S P Regul. Chaot. Dyn. 24 725 (2019)
  9. Awrejcewicz Ja, Kudra G Multibody Syst Dyn 45 155 (2019)
  10. Borisov A V, Kilin A A, Mamaev I S Regul. Chaot. Dyn. 24 329 (2019)
  11. Bizyaev I A, Borisov A V, Kuznetsov S P Nonlinear Dyn 95 699 (2019)
  12. Borisov A V, Vetchanin E V, Mamaev I S Russ. J. Math. Phys. 26 412 (2019)
  13. Borisov A V, Kuznetsov S P Regul. Chaot. Dyn. 23 803 (2018)
  14. Kilin A A, Pivovarova E N Regul. Chaot. Dyn. 23 887 (2018)
  15. Kuznetsov S P Regul. Chaot. Dyn. 23 178 (2018)
  16. Bizyaev I A, Borisov A V, Mamaev I S Regul. Chaot. Dyn. 23 665 (2018)
  17. Rauch-Wojciechowski S, Przybylska M Regul. Chaot. Dyn. 22 368 (2017)
  18. Kondo Y, Nakanishi H Phys. Rev. E 95 (6) (2017)
  19. Bizyaev I A, Borisov A V, Kuznetsov S P EPL 119 60008 (2017)
  20. Kuznetsov S P, Kruglov V P Proc. Steklov Inst. Math. 297 208 (2017)
  21. Zhang J, Chu Ya et al Cluster Comput 20 1437 (2017)
  22. Kuznetsov S P EPL 118 10007 (2017)
  23. Kuznetsov S P, Kruglov V P Regul. Chaot. Dyn. 21 160 (2016)
  24. Borisov A V, Kazakov A O, Sataev I R Regul. Chaot. Dyn. 21 939 (2016)
  25. Vetchanin E V, Kazakov A O Int. J. Bifurcation Chaos 26 1650063 (2016)
  26. Borisov A V, Kuznetsov S P Regul. Chaot. Dyn. 21 792 (2016)
  27. Bizyaev I A, Borisov A V, Mamaev I S Regul. Chaot. Dyn. 21 136 (2016)
  28. Kuznetsov S P Tech. Phys. 61 436 (2016)
  29. Zhuravlev V F Uspekhi Fizicheskikh Nauk 185 1337 (2015) [Zhuravlev V F Phys.-Usp. 58 1218 (2015)]
  30. Kuznetsov S P Regul. Chaot. Dyn. 20 649 (2015)
  31. Borisov A V, Karavaev Yu L et al Regul. Chaot. Dyn. 20 518 (2015)
  32. Kuznetsov S P Uspekhi Fizicheskikh Nauk 185 1342 (2015) [Kuznetsov S P Phys.-Usp. 58 1223 (2015)]
  33. Karavaev Yu L, Kilin A A Regul. Chaot. Dyn. 20 134 (2015)
  34. Borisov A V, Mamaev I S Uspekhi Fizicheskikh Nauk 185 1339 (2015) [Borisov A V, Mamaev I S Phys.-Usp. 58 1220 (2015)]
  35. Kilin A A, Pivovarova E N, Ivanova T B Regul. Chaot. Dyn. 20 716 (2015)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions