Issues

 / 

2014

 / 

May

  

Reviews of topical problems


Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas

 a,  a,  a, b
a Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str. 84/32, Moscow, 117997, Russian Federation
b Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation

A state of the art review is given of research on compressible magnetohydrodynamic turbulence in space plasmas. The presence of magnetic fields and compressibility in this case makes space plasma turbulence much less amenable to direct numerical simulations compared to a neutral incompressible fluid. The large eddy simulation method is discussed, which was developed as an alternative to direct modeling and which filters the initial magnetohydrodynamics equations and uses the subgrid-scale modeling of universal small-scale turbulence. A detailed analysis is made of both the method itself and different subgrid-scale parametrizations for compressible magnetohydrodynamic turbulent flows in polytropic or heat-conducting plasmas. The use of large eddy simulations to study turbulence in local interstellar medium and the scale-invariant spectra of magnetohydrodynamic turbulence are discussed.

Fulltext pdf (400 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0184.201405a.0457
PACS: 47.27.E−, 47.27.ep, 47.27.Gs, 52.35.Ra, 52.65.Kj (all)
DOI: 10.3367/UFNe.0184.201405a.0457
URL: https://ufn.ru/en/articles/2014/5/a/
000340732000001
2-s2.0-84905988859
2014PhyU...57..421C
Citation: Chernyshov A A, Karelsky K V, Petrosyan A S "Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas" Phys. Usp. 57 421–452 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 28th, March 2013, revised: 13th, September 2013, 13th, September 2013

Оригинал: Чернышов А А, Карельский К В, Петросян А С «Подсеточное моделирование для исследования сжимаемой магнитогидродинамической турбулентности космической плазмы» УФН 184 457–492 (2014); DOI: 10.3367/UFNr.0184.201405a.0457

References (183) Cited by (25) ↓ Similar articles (20)

  1. Miura H Plasma 7 793 (2024)
  2. Dmitrenko A V Continuum Mech. Thermodyn. 36 911 (2024)
  3. Sinevich A A, Chernyshov A A et al JGR Space Physics 128 (3) (2023)
  4. Miura H, Hamba F Journal Of Computational Physics 448 110692 (2022)
  5. Alexakis A, Chibbaro S J. Plasma Phys. 88 (5) (2022)
  6. Jadhav K, Chandy A J 33 (8) (2021)
  7. Fedotova M, Klimachkov D, Petrosyan A Universe 7 87 (2021)
  8. Kurazhkovskaya N, Zotov O, Klain B 7 24 (2021)
  9. Zotov O, Klain B, Kurazhkovskaya N 5 46 (2019)
  10. Grete P, Latif M A et al 487 4525 (2019)
  11. Sirazov R A, Petrosyan A S Jetp Lett. 110 329 (2019)
  12. Zotov O, Klain B, Kurazhkovskaya N 5 55 (2019)
  13. Kenjereš Saša International Journal Of Heat And Fluid Flow 73 270 (2018)
  14. Grete P, Vlaykov D G et al Phys. Rev. E 95 (3) (2017)
  15. Dmitrenko A V Continuum Mech. Thermodyn. 29 1 (2017)
  16. Kurbatov E P, Zhilkin A G, Bisikalo D V Phys.-Usp. 60 798 (2017)
  17. Chernyshov A A, Kozelov B V, Mogilevsky M M Journal Of Atmospheric And Solar-Terrestrial Physics 161 127 (2017)
  18. Kessar M, Balarac G, Plunian F 23 (10) (2016)
  19. Chernyshov A A, Petrosyan A S Phys. Scr. 91 064002 (2016)
  20. Vlaykov D G, Grete P et al 23 (6) (2016)
  21. Strugarek A, Beaudoin P et al Advances In Space Research 58 1538 (2016)
  22. Grete P, Vlaykov D G et al 23 (6) (2016)
  23. Miesch M, Matthaeus W et al Space Sci Rev 194 97 (2015)
  24. Bakunin O G Uspekhi Fizicheskikh Nauk 185 271 (2015) [Bakunin O G Phys.-Usp. 58 252 (2015)]
  25. Grete P, Vlaykov D G et al New J. Phys. 17 023070 (2015)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions