Issues

 / 

2014

 / 

February

  

Conferences and Symposia. 100th anniversary of the birth of I.Ya. Pomeranchuk


A new method for solving the Z > 137 problem and determining hydrogen-like energy levels

,
All-Russian Scientific Research Institute of Experimental Physics — Federal Nuclear Centre, prosp. Mira 37, Sarov, Nizhny Novgorod region, 607190, Russian Federation

A new method for including finite nuclear size effects is suggested to overcome the “Z > 137 catastrophe” encountered in solving the Dirac equation for an electron in the field of a point charge Ze. In this method, the boundary condition for the numerical solution of the equations for the Dirac radial wave functions is taken to be that the components of the electron current density are zero at the boundary of the nucleus. As a result, for all of the nuclei of the periodic table the calculated energy levels practically coincide with those obtained in a standard way from the Dirac equation for a Coulomb point charge potential. For Z > 105, the calculated energy level functions E(Z) prove to be smooth and monotonic. The ground energy level reaches E = −mc2 (i.e., the electron drops into the nucleus) at Zc = 178. The proposed method for accounting for the finite size of nuclei can be useful in numerically calculating the energy levels of many-electron atoms.

Fulltext pdf (531 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0184.201402i.0200
PACS: 03.65.Ge, 03.65.Pm, 12.20.−m (all)
DOI: 10.3367/UFNe.0184.201402i.0200
URL: https://ufn.ru/en/articles/2014/2/i/
000336162000009
2-s2.0-84900801606
2014PhyU...57..189N
Citation: Neznamov V P, Safronov I I "A new method for solving the Z > 137 problem and determining hydrogen-like energy levels" Phys. Usp. 57 189–193 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 1st, November 2013, 5th, June 2013

Оригинал: Незнамов В П, Сафронов И И «Новый метод решения проблемы ‘Z > 137’ и определения уровней энергии водородоподобных атомов» УФН 184 200–205 (2014); DOI: 10.3367/UFNr.0184.201402i.0200

References (18) ↓ Cited by (4) Similar articles (7)

  1. Sommerfeld A Ann. Physik 51 1 (1916)
  2. Dirac P A M Proc. R. Soc. Lond. A 117 610 (1928)
  3. Dirac P A M Proc. R. Soc. Lond. A 118 351 (1928)
  4. Darwin C G Proc. R. Soc. Lond. A 118 654 (1928)
  5. Gordon W Z. Phys. 48 11 (1928)
  6. Pomeranchuk I, Smorodinsky J J. Phys. USSR 9 97 (1945)
  7. Zel’dovich Ya B Fiz. Tverd. Tela 1 1637 (1959); Zel’dovich Ya B Sov. Phys. Solid State Phys. 1 1497 (1960)
  8. Zel’dovich Ya B, Popov V S Usp. Fiz. Nauk 105 403 (1971); Zeldovich Ya B, Popov V S Sov. Phys. Usp. 14 673 (1972)
  9. Andrae D Phys. Rep. 336 413 (2000)
  10. Ruffini R, Vereshchagin G, Xue S-S Phys. Rep. 487 1 (2010)
  11. Pieper W, Greiner W Z. Phys. 218 327 (1969)
  12. Vronsky M A et al. arXiv:1301.7595
  13. Brill D R, Wheeler J A Rev. Mod. Phys. 29 465 (1957)
  14. Dolan S R Ph.D. Thesis (Cambridge: Univ. of Cambridge, 2006)
  15. Colijn C, Vrscay E R Found. Phys. Lett. 16 303 (2003)
  16. Johnson W R, Soff G Atom. Data Nucl. Tabl. 33 405 (1985)
  17. Hairer E, Wanner G Solving Ordinary Differential Equations II. Stiff And Differential-Algebraic Problems 2nd rev. ed. (Berlin: Springer-Verlag, 1996)
  18. Ehle B L Research Report CSRR 2010 (Ontario, Canada: Dept. AACS, Univ. of Waterloo, 1969)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions