Issues

 / 

2014

 / 

December

  

Reviews of topical problems


Laser ion acceleration for hadron therapy

 a, b, c,  d,  b, c,  e,  f,  g,  d,  h
a Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation
b Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kyoto, Kizugawa-shi, 619-0215, Japan
c Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
d Technische Universität München, Boltzmann str. 3, München, 85748, Bundesrepublik Deutschland
e ELI-Beamlines, Institute of Physics, Czech Republic Academy of Sciences, Na Slovance 2, Prague, 18221, Czech Republic
f GSI Helmholtzzentrum für Schwerionenforschung GmbH, Plankstr 1, Darmstadt, 64291, Germany
g Forschungszentrum Dresden–Rossendorf, Institute of Radiochemistry, Dresden, Germany
h Russian Federation State Scientific Center ‘A.I. Alikhanov Institute of Theoretical and Experimental Physics’, ul. Bolshaya Cheremushkinskaya 25, Moscow, 117259, Russian Federation

The paper examines the prospects of using laser plasma as a source of high-energy ions for the purposes of hadron beam therapy — a possibility which is expected not only on theoretical grounds but also on experimental grounds (ions are routinely observed to be accelerated in the interaction of high-power laser radiation with matter). Compared to therapy accelerators like cyclotrons, laser technology is advantageous in that it is more compact and is simpler in delivering ions from the accelerator to the treatment room. Special target designs allow the radiation therapy requirements on ion beam quality to be satisfied.

Fulltext pdf (1.3 MB)
Fulltext is also available at DOI: 10.3367/UFNe.0184.201412a.1265
PACS: 41.75.Jv, 52.38.Kd, 87.50.−a, 87.53.Jw, 87.55.−x, 87.56.−v (all)
DOI: 10.3367/UFNe.0184.201412a.1265
URL: https://ufn.ru/en/articles/2014/12/a/
000350894500001
2-s2.0-84924357340
2014PhyU...57.1149B
Citation: Bulanov S V, Wilkens Ja J, Esirkepov T Zh, Korn G, Kraft G, Kraft S, Molls M, Khoroshkov V S "Laser ion acceleration for hadron therapy" Phys. Usp. 57 1149–1179 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 3rd, March 2014, 15th, July 2014

Îðèãèíàë: Áóëàíîâ Ñ Â, Âèëêåíñ ß ß, Åñèðêåïîâ Ò Æ, Êîðí Ã, Êðàôò Ã, Êðàôò Ñ Ä, Ìîëëñ Ì, Õîðîøêîâ Â Ñ «Ëàçåðíîå óñêîðåíèå èîíîâ äëÿ àäðîííîé òåðàïèè» ÓÔÍ 184 1265–1298 (2014); DOI: 10.3367/UFNr.0184.201412a.1265

References (267) Cited by (111) ↓ Similar articles (20)

  1. Wei T, Arikawa Ya et al 31 (7) (2024)
  2. Yang L, Wang X-N et al Acta Phys. Sin. 73 115202 (2024)
  3. Yan Ya, Yang T et al Phys. Rev. Accel. Beams 27 (5) (2024)
  4. Tazes I, Passalidis S et al Sci Rep 14 (1) (2024)
  5. Yan Ya, Cheng H et al Phys. Rev. Accel. Beams 27 (5) (2024)
  6. Bhadoria Sh, Marklund M, Keitel Ch H High Pow Laser Sci Eng 12 (2024)
  7. Hata M, Sano T et al Phys. Rev. E 108 (3) (2023)
  8. Matys M, Psikal Ja et al Photonics 10 61 (2023)
  9. Sun X Y, Wang W P et al Plasma Phys. Control. Fusion 65 095008 (2023)
  10. Ehret M, Apiñaniz J I et al Nuclear Instruments And Methods In Physics Research Section B: Beam Interactions With Materials And Atoms 541 165 (2023)
  11. Kovalev V F, Bychenkov V Yu Bull. Lebedev Phys. Inst. 50 S762 (2023)
  12. Marini S, Grech M et al Phys. Rev. Research 5 (1) (2023)
  13. Russell B K, Campbell P T et al 30 (9) (2023)
  14. Yan Ya, Yang T et al Nuclear Instruments And Methods In Physics Research Section A: Accelerators, Spectrometers, Detectors And Associated Equipment 1057 168737 (2023)
  15. Lü J, Luo Yu et al Chin. Sci. Bull. 68 1112 (2023)
  16. Yan Ya, Yang T et al Chin. Sci. Bull. (2023)
  17. Moon Je T, Bulanov S V et al Opt. Express 31 21614 (2023)
  18. De Marco Sh Ch, Mondal S et al 8 (5) (2023)
  19. Wang W P, Dong H et al 30 (3) (2023)
  20. Paradkar B S Phys. Rev. E 108 (2) (2023)
  21. Chou H -G Jason, Grassi A et al J. Plasma Phys. 88 (6) (2022)
  22. Lezhnin K V, Bulanov S V Phys. Rev. Research 4 (3) (2022)
  23. Dolier E J, King M et al New J. Phys. 24 073025 (2022)
  24. Gabdrakhmanov I M, Govras E A Plasma Phys. Rep. 48 155 (2022)
  25. Wang W P, Dong H et al 121 (21) (2022)
  26. Wan F, Wang W-Q et al Phys. Rev. Applied 17 (2) (2022)
  27. Shi Y, Blackman D R et al High Pow Laser Sci Eng 10 (2022)
  28. Gong Zh, Bulanov S S et al Phys. Rev. Research 4 (4) (2022)
  29. Morita T Phys. Rev. Research 4 (4) (2022)
  30. Hakimi S, Obst-Huebl L et al 29 (8) (2022)
  31. Matys M, Bulanov S V et al New J. Phys. 24 113046 (2022)
  32. Davydov S G, Dolgov A N et al Plasma Phys. Rep. 48 59 (2022)
  33. Gonoskov A, Blackburn T  G et al Rev. Mod. Phys. 94 (4) (2022)
  34. Soni K K, Jain Sh et al Physics Letters A 426 127890 (2022)
  35. Takagi Yu, Iwata N et al Phys. Rev. Research 3 (4) (2021)
  36. Djordjević B Z, Kemp A J et al Plasma Phys. Control. Fusion 63 094005 (2021)
  37. Ma W-Ju, Liu Zh-P et al Acta Phys. Sin. 70 084102 (2021)
  38. Bulanov S V Phys. Wave Phen. 29 1 (2021)
  39. Kumar R, Sakawa Y et al Phys. Rev. E 103 (4) (2021)
  40. Nedorezov V G, Rykovanov S G, Savel’ev A B Phys.-Usp. 64 1214 (2021)
  41. Shi Y, Blackman D et al Phys. Rev. Lett. 126 (23) (2021)
  42. Alviri V M, Soleimani Sh A, Asem M M Advances In Intelligent Systems And Computing Vol. Proceedings of Fifth International Congress on Information and Communication TechnologyPlasma Temperature Classification for Cancer Treatment Based on Hadron Therapy1184 Chapter 2 (2021) p. 17
  43. Culfa O Eur. Phys. J. D 75 (7) (2021)
  44. Djordjević B Z, Kemp A J et al 28 (4) (2021)
  45. Sakawa Y, Ohira Yu et al Phys. Rev. E 104 (5) (2021)
  46. Zhou W-Ju, Wang W-M, Chen L-M Plasma Phys. Control. Fusion 63 035016 (2021)
  47. Gelfer E G, Fedotov A M, Weber S New J. Phys. 23 095002 (2021)
  48. Culfa O, Sagir S J. Plasma Phys. 87 (6) (2021)
  49. Matys M, Nishihara K et al High Energy Density Physics 36 100844 (2020)
  50. Nishiuchi M, Dover N P et al Phys. Rev. Research 2 (3) (2020)
  51. Golovin D O, Mirfayzi S R et al High Energy Density Physics 36 100840 (2020)
  52. Nishiuchi M, Sakaki H et al 91 (9) (2020)
  53. Hadjisolomou P, Bulanov S V, Korn G J. Plasma Phys. 86 (3) (2020)
  54. Steinke S, Bin J  H et al Phys. Rev. Accel. Beams 23 (2) (2020)
  55. Pae K H, Song H et al Plasma Phys. Control. Fusion 62 055009 (2020)
  56. Scuderi V, Milluzzo G et al Nuclear Instruments And Methods In Physics Research Section A: Accelerators, Spectrometers, Detectors And Associated Equipment 978 164364 (2020)
  57. Culfa O, Sert V Indian J Phys 94 1451 (2020)
  58. Park J, Bin J H et al 27 (12) (2020)
  59. Bailly-Grandvaux M, Kawahito D et al Phys. Rev. E 102 (2) (2020)
  60. Hadjisolomou P, Tsygvintsev I P et al 27 (1) (2020)
  61. Morita T Plasma Phys. Control. Fusion 62 105003 (2020)
  62. Milluzzo G, Scuderi V et al 90 (8) (2019)
  63. Alviri V M, Soleimani Sh A et al Lecture Notes In Computer Science Vol. Computational Science and Its Applications – ICCSA 2019Particle Charging Using Ultra-Short Pulse Laser in the Ideal Maxwellian Cold Plasma for Cancer Treatment Based on Hadron Therapy11620 Chapter 61 (2019) p. 767
  64. Mackenroth F, Bulanov S S 26 (2) (2019)
  65. Wang W P, Shen B F et al 26 (4) (2019)
  66. Li Ju, Arefiev A V et al Sci Rep 9 (1) (2019)
  67. Bin J H, Ji Q et al 90 (5) (2019)
  68. Bulanov S V Rend. Fis. Acc. Lincei 30 5 (2019)
  69. Sangwan D, Culfa O et al Laser Part. Beams 37 346 (2019)
  70. Wang W, Jiang Ch et al High Pow Laser Sci Eng 7 (2019)
  71. Polz J, Robinson A P L et al Sci Rep 9 (1) (2019)
  72. Park J, Bulanov S S et al 26 (10) (2019)
  73. Cirrone G A P, Cuttone G et al Springer Proceedings In Physics Vol. Laser-Driven Sources of High Energy Particles and RadiationParticles Simulation Through Matter in Medical Physics Using the Geant4 Toolkit: From Conventional to Laser-Driven Hadrontherapy231 Chapter 9 (2019) p. 187
  74. Vyšín Luděk, Burian Tomáš et al Radiation Research 189 466 (2018)
  75. Scuderi V, Amato A et al Applied Sciences 8 1415 (2018)
  76. Choudhary Sh, Holkundkar A R 25 (10) (2018)
  77. Margarone D, Cirrone G et al QuBS 2 8 (2018)
  78. Wang W P, Shen B F, Xu Z Z 24 (1) (2017)
  79. Bulanov S S, Bulanov S V et al (AIP Conference Proceedings) Vol. 1812 (2017) p. 090001
  80. Bulanov S S, Beg F N (AIP Conference Proceedings) Vol. 1812 (2017) p. 030006
  81. Makarov S, Pikuz S et al Opt. Express 25 16419 (2017)
  82. Jinno S, Tanaka H et al Opt. Express 25 18774 (2017)
  83. Morita T 24 (8) (2017)
  84. Romano F, Cirrone G A P et al J. Phys.: Conf. Ser. 777 012016 (2017)
  85. Cirrone G A P, Cuttone G et al Front. Oncol. 7 (2017)
  86. Wang Ch, Peng Y et al J Russ Laser Res 38 357 (2017)
  87. Macchi A, Livi C, Sgattoni A J. Inst. 12 C04016 (2017)
  88. Yogo A, Mima K et al Sci Rep 7 (1) (2017)
  89. Nishiuchi M, Sakaki H et al Plasma Phys. Rep. 42 327 (2016)
  90. Romano F, Schillaci F et al Nuclear Instruments And Methods In Physics Research Section A: Accelerators, Spectrometers, Detectors And Associated Equipment 829 153 (2016)
  91. Vay Je-L, Lehe R Rev. Accl. Sci. Tech. 09 165 (2016)
  92. Margarone D, Velyhan A et al Phys. Rev. X 6 (4) (2016)
  93. Choudhary Sh, Holkundkar A R Eur. Phys. J. D 70 (11) (2016)
  94. Pikuz S A, Skobelev I Yu et al High Temp 54 428 (2016)
  95. Chukbar K V Plasma Phys. Rep. 42 1134 (2016)
  96. Yogo A Laser-Driven Particle Acceleration Towards Radiobiology and Medicine Biological And Medical Physics, Biomedical Engineering Chapter 11 (2016) p. 249
  97. Klenov G I, Khoroshkov V S Uspekhi Fizicheskikh Nauk 186 891 (2016)
  98. Amato E, Italiano A et al Nuclear Instruments And Methods In Physics Research Section A: Accelerators, Spectrometers, Detectors And Associated Equipment 811 1 (2016)
  99. Yogo A, Bulanov S V et al Plasma Phys. Control. Fusion 58 025003 (2016)
  100. Lezhnin K V, Kamenets F F et al 23 (5) (2016)
  101. Bulanov S S, Esarey E et al 23 (5) (2016)
  102. Kim I J, Pae K H et al 23 (7) (2016)
  103. Schillaci F, Cirrone G A P et al J. Inst. 11 C12052 (2016)
  104. Gubin K V, Lotov K V et al 120 (11) (2016)
  105. (Laser Acceleration of Electrons, Protons, and Ions III; and Medical Applications of Laser-Generated Beams of Particles III) Vol. Laser Acceleration of Electrons, Protons, and Ions III; and Medical Applications of Laser-Generated Beams of Particles IIIMaximum attainable ion energy in the radiation pressure acceleration regimeKenneth W. D.LedinghamKlausSpohrPaulMcKennaPaul R.BoltonEricEsareyCarl B.SchroederFlorian J.GrünerS. S.BulanovE.EsareyC. B.SchroederS. V.BulanovT. Z.EsirkepovM.KandoF.PegoraroW. P.Leemans9514 (2015) p. 95140G
  106. Nishiuchi M, Sakaki H et al 22 (3) (2015)
  107. Bulanov S  S, Esarey E et al Phys. Rev. ST Accel. Beams 18 (6) (2015)
  108. Bulanov S  S, Esarey E et al Phys. Rev. Lett. 114 (10) (2015)
  109. Bychenkov V Yu, Brantov A V et al Uspekhi Fizicheskikh Nauk 185 77 (2015) [Bychenkov V Yu, Brantov A V et al Phys.-Usp. 58 71 (2015)]
  110. Lezhnin K V, Kamenets F F et al 22 (3) (2015)
  111. (Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers II) Vol. Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers IITowards the effect of transverse inhomogeneity of electromagnetic pulse on the process of ion acceleration in the RPDA regimeGeorgKornLuis O.SilvaK. V.LezhninF. F.KamenetsV. S.BeskinM.KandoT. Z.EsirkepovS. V.Bulanov9515 (2015) p. 95151L

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions