Issues

 / 

2014

 / 

December

  

Reviews of topical problems


Laser ion acceleration for hadron therapy

 a, b, c,  d,  b, c,  e,  f,  g,  d,  h
a Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation
b Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kyoto, Kizugawa-shi, 619-0215, Japan
c Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
d Technische Universität München, Boltzmann str. 3, München, 85748, Bundesrepublik Deutschland
e ELI-Beamlines, Institute of Physics, Czech Republic Academy of Sciences, Na Slovance 2, Prague, 18221, Czech Republic
f GSI Helmholtzzentrum für Schwerionenforschung GmbH, Plankstr 1, Darmstadt, 64291, Germany
g Forschungszentrum Dresden–Rossendorf, Institute of Radiochemistry, Dresden, Germany
h Russian Federation State Scientific Center ‘A.I. Alikhanov Institute of Theoretical and Experimental Physics’, ul. Bolshaya Cheremushkinskaya 25, Moscow, 117259, Russian Federation

The paper examines the prospects of using laser plasma as a source of high-energy ions for the purposes of hadron beam therapy — a possibility which is expected not only on theoretical grounds but also on experimental grounds (ions are routinely observed to be accelerated in the interaction of high-power laser radiation with matter). Compared to therapy accelerators like cyclotrons, laser technology is advantageous in that it is more compact and is simpler in delivering ions from the accelerator to the treatment room. Special target designs allow the radiation therapy requirements on ion beam quality to be satisfied.

Fulltext pdf (1.3 MB)
Fulltext is also available at DOI: 10.3367/UFNe.0184.201412a.1265
PACS: 41.75.Jv, 52.38.Kd, 87.50.−a, 87.53.Jw, 87.55.−x, 87.56.−v (all)
DOI: 10.3367/UFNe.0184.201412a.1265
URL: https://ufn.ru/en/articles/2014/12/a/
000350894500001
2-s2.0-84924357340
2014PhyU...57.1149B
Citation: Bulanov S V, Wilkens Ja J, Esirkepov T Zh, Korn G, Kraft G, Kraft S, Molls M, Khoroshkov V S "Laser ion acceleration for hadron therapy" Phys. Usp. 57 1149–1179 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 3rd, March 2014, 15th, July 2014

Îðèãèíàë: Áóëàíîâ Ñ Â, Âèëêåíñ ß ß, Åñèðêåïîâ Ò Æ, Êîðí Ã, Êðàôò Ã, Êðàôò Ñ Ä, Ìîëëñ Ì, Õîðîøêîâ Â Ñ «Ëàçåðíîå óñêîðåíèå èîíîâ äëÿ àäðîííîé òåðàïèè» ÓÔÍ 184 1265–1298 (2014); DOI: 10.3367/UFNr.0184.201412a.1265

References (267) Cited by (126) ↓ Similar articles (20)

  1. Wang W, Sun X et al Commun Phys 8 (1) (2025)
  2. Gus’kov S Yu Physics of Plasmas 32 (1) (2025)
  3. Boller P, Hornung J et al Physics of Plasmas 32 (8) (2025)
  4. Korzhimanov A V QuBS 9 (1) 4 (2025)
  5. Pang Z, Liu J, Chen Z-Yu Physics of Plasmas 32 (10) (2025)
  6. Matys M, Hadjisolomou P et al New J. Phys. 27 (3) 033018 (2025)
  7. Chen X, Yang L et al Eur. Phys. J. D 79 (4) (2025)
  8. Liu Z, Zhao M K et al AIP Advances 15 (5) (2025)
  9. Matys M, Thistlewood Ja P et al Photonics 12 (5) 436 (2025)
  10. Yan Ya, Huang M et al Phys. Rev. Accel. Beams 28 (3) (2025)
  11. Garten M, Bulanov S S et al Phys. Rev. Research 6 (3) (2024)
  12. Yang L, Wang X-N et al Acta Phys. Sin. 73 (11) 115202 (2024)
  13. Sakawa Y, Ishihara H et al Phys. Rev. Lett. 133 (19) (2024)
  14. Kim A, Dey I et al Applied Sciences 15 (1) 237 (2024)
  15. Wei T, Arikawa Ya et al Physics of Plasmas 31 (7) (2024)
  16. Yan Ya, Yang T et al Phys. Rev. Accel. Beams 27 (5) (2024)
  17. Wang W Rev. Mod. Plasma Phys. 8 (1) (2024)
  18. Bhadoria Sh, Marklund M, Keitel Ch H High Pow Laser Sci Eng 12 (2024)
  19. Yan Ya, Cheng H et al Phys. Rev. Accel. Beams 27 (5) (2024)
  20. Tazes I, Passalidis S et al Sci Rep 14 (1) (2024)
  21. Hakimi S, Bulanov S S et al Physics of Plasmas 31 (12) (2024)
  22. Marini S, Grech M et al Phys. Rev. Research 5 (1) (2023)
  23. Paradkar B S Phys. Rev. E 108 (2) (2023)
  24. Matys M, Psikal Ja et al Photonics 10 (1) 61 (2023)
  25. Yan Ya, Yang T et al Nuclear Instruments And Methods In Physics Research Section A: Accelerators, Spectrometers, Detectors And Associated Equipment 1057 168737 (2023)
  26. Moon Je T, Bulanov S V et al Opt. Express 31 (13) 21614 (2023)
  27. Kovalev V F, Bychenkov V Yu Bull. Lebedev Phys. Inst. 50 (S7) S762 (2023)
  28. Yan Ya, Yang T et al Chin. Sci. Bull. (2023)
  29. Ehret M, Apiñaniz J I et al Nuclear Instruments And Methods In Physics Research Section B: Beam Interactions With Materials And Atoms 541 165 (2023)
  30. Lü J, Luo Yu et al Chin. Sci. Bull. 68 (9) 1112 (2023)
  31. Hata M, Sano T et al Phys. Rev. E 108 (3) (2023)
  32. De Marco Sh Ch, Mondal S et al Matter and Radiation at Extremes 8 (5) (2023)
  33. Sun X Y, Wang W P et al Plasma Phys. Control. Fusion 65 (9) 095008 (2023)
  34. Russell B K, Campbell P T et al Physics of Plasmas 30 (9) (2023)
  35. Wang W P, Dong H et al Physics of Plasmas 30 (3) (2023)
  36. Gonoskov A, Blackburn T  G et al Rev. Mod. Phys. 94 (4) (2022)
  37. Hakimi S, Obst-Huebl L et al Physics of Plasmas 29 (8) (2022)
  38. Wang W P, Dong H et al Applied Physics Letters 121 (21) (2022)
  39. Gabdrakhmanov I M, Govras E A Plasma Phys. Rep. 48 (2) 155 (2022)
  40. Chou H -G Jason, Grassi A et al J. Plasma Phys. 88 (6) (2022)
  41. Davydov S G, Dolgov A N et al Plasma Phys. Rep. 48 (1) 59 (2022)
  42. Lezhnin K V, Bulanov S V Phys. Rev. Research 4 (3) (2022)
  43. Wan F, Wang W-Q et al Phys. Rev. Applied 17 (2) (2022)
  44. Gong Zh, Bulanov S S et al Phys. Rev. Research 4 (4) (2022)
  45. Matys M, Bulanov S V et al New J. Phys. 24 (11) 113046 (2022)
  46. Dolier E J, King M et al New J. Phys. 24 (7) 073025 (2022)
  47. Soni K K, Jain Sh et al Physics Letters A 426 127890 (2022)
  48. Morita T Phys. Rev. Research 4 (4) (2022)
  49. Shi Y, Blackman D R et al High Pow Laser Sci Eng 10 (2022)
  50. Shi Y, Blackman D et al Phys. Rev. Lett. 126 (23) (2021)
  51. Culfa O, Sagir S J. Plasma Phys. 87 (6) (2021)
  52. Ma W-Ju, Liu Zh-P et al Acta Phys. Sin. 70 (8) 084102 (2021)
  53. Nedorezov V G, Rykovanov S G, Savel’ev A B Phys.-Usp. 64 (12) 1214 (2021)
  54. Sakawa Y, Ohira Yu et al Phys. Rev. E 104 (5) (2021)
  55. Gelfer E G, Fedotov A M, Weber S New J. Phys. 23 (9) 095002 (2021)
  56. Takagi Yu, Iwata N et al Phys. Rev. Research 3 (4) (2021)
  57. Culfa O Eur. Phys. J. D 75 (7) (2021)
  58. Alviri V M, Soleimani Sh A, Asem M M Advances In Intelligent Systems And Computing Vol. Proceedings of Fifth International Congress on Information and Communication TechnologyPlasma Temperature Classification for Cancer Treatment Based on Hadron Therapy1184 Chapter 2 (2021) p. 17
  59. Djordjević B Z, Kemp A J et al Plasma Phys. Control. Fusion 63 (9) 094005 (2021)
  60. Djordjević B Z, Kemp A J et al Physics of Plasmas 28 (4) (2021)
  61. Kumar R, Sakawa Y et al Phys. Rev. E 103 (4) (2021)
  62. Zhou W-Ju, Wang W-M, Chen L-M Plasma Phys. Control. Fusion 63 (3) 035016 (2021)
  63. Bulanov S V Phys. Wave Phen. 29 (1) 1 (2021)
  64. Nishiuchi M, Sakaki H et al Review of Scientific Instruments 91 (9) (2020)
  65. Hadjisolomou P, Tsygvintsev I P et al Physics of Plasmas 27 (1) (2020)
  66. Bailly-Grandvaux M, Kawahito D et al Phys. Rev. E 102 (2) (2020)
  67. Park J, Bin J H et al Physics of Plasmas 27 (12) (2020)
  68. Hadjisolomou P, Bulanov S V, Korn G J. Plasma Phys. 86 (3) (2020)
  69. Steinke S, Bin J  H et al Phys. Rev. Accel. Beams 23 (2) (2020)
  70. Pae K H, Song H et al Plasma Phys. Control. Fusion 62 (5) 055009 (2020)
  71. Culfa O, Sert V Indian J Phys 94 (9) 1451 (2020)
  72. Nishiuchi M, Dover N P et al Phys. Rev. Research 2 (3) (2020)
  73. Morita T Plasma Phys. Control. Fusion 62 (10) 105003 (2020)
  74. Scuderi V, Milluzzo G et al Nuclear Instruments And Methods In Physics Research Section A: Accelerators, Spectrometers, Detectors And Associated Equipment 978 164364 (2020)
  75. Matys M, Nishihara K et al High Energy Density Physics 36 100844 (2020)
  76. Golovin D O, Mirfayzi S R et al High Energy Density Physics 36 100840 (2020)
  77. Mackenroth F, Bulanov S S Physics of Plasmas 26 (2) (2019)
  78. Wang W P, Shen B F et al Physics of Plasmas 26 (4) (2019)
  79. Li Ju, Arefiev A V et al Sci Rep 9 (1) (2019)
  80. Cirrone G A P, Cuttone G et al Springer Proceedings In Physics Vol. Laser-Driven Sources of High Energy Particles and RadiationParticles Simulation Through Matter in Medical Physics Using the Geant4 Toolkit: From Conventional to Laser-Driven Hadrontherapy231 Chapter 9 (2019) p. 187
  81. Bin J H, Ji Q et al Review of Scientific Instruments 90 (5) (2019)
  82. Sangwan D, Culfa O et al Laser Part. Beams 37 (4) 346 (2019)
  83. Polz J, Robinson A P L et al Sci Rep 9 (1) (2019)
  84. Milluzzo G, Scuderi V et al Review of Scientific Instruments 90 (8) (2019)
  85. Park J, Bulanov S S et al Physics of Plasmas 26 (10) (2019)
  86. Wang W, Jiang Ch et al High Pow Laser Sci Eng 7 (2019)
  87. Bulanov S V Rend. Fis. Acc. Lincei 30 (1) 5 (2019)
  88. Alviri V M, Soleimani Sh A et al Lecture Notes In Computer Science Vol. Computational Science and Its Applications – ICCSA 2019Particle Charging Using Ultra-Short Pulse Laser in the Ideal Maxwellian Cold Plasma for Cancer Treatment Based on Hadron Therapy11620 Chapter 61 (2019) p. 767
  89. Scuderi V, Amato A et al Applied Sciences 8 (9) 1415 (2018)
  90. Vyšín Luděk, Burian Tomáš et al Radiation Research 189 (5) 466 (2018)
  91. Choudhary Sh, Holkundkar A R Physics of Plasmas 25 (10) (2018)
  92. Margarone D, Cirrone G et al QuBS 2 (2) 8 (2018)
  93. Wang Ch, Peng Y et al J Russ Laser Res 38 (4) 357 (2017)
  94. Makarov S, Pikuz S et al Opt. Express 25 (14) 16419 (2017)
  95. Yogo A, Mima K et al Sci Rep 7 (1) (2017)
  96. Jinno S, Tanaka H et al Opt. Express 25 (16) 18774 (2017)
  97. Morita T Physics of Plasmas 24 (8) (2017)
  98. Romano F, Cirrone G A P et al J. Phys.: Conf. Ser. 777 012016 (2017)
  99. Bulanov S S, Bulanov S V et al (AIP Conference Proceedings) Vol. 1812 (2017) p. 090001
  100. Bulanov S S, Beg F N (AIP Conference Proceedings) Vol. 1812 (2017) p. 030006
  101. Macchi A, Livi C, Sgattoni A J. Inst. 12 (04) C04016 (2017)
  102. Cirrone G A P, Cuttone G et al Front. Oncol. 7 (2017)
  103. Wang W P, Shen B F, Xu Z Z Physics of Plasmas 24 (1) (2017)
  104. Pikuz S A, Skobelev I Yu et al High Temp 54 (3) 428 (2016)
  105. Choudhary Sh, Holkundkar A R Eur. Phys. J. D 70 (11) (2016)
  106. Romano F, Schillaci F et al Nuclear Instruments And Methods In Physics Research Section A: Accelerators, Spectrometers, Detectors And Associated Equipment 829 153 (2016)
  107. Yogo A Laser-Driven Particle Acceleration Towards Radiobiology and Medicine Biological And Medical Physics, Biomedical Engineering Chapter 11 (2016) p. 249
  108. Bulanov S S, Esarey E et al Physics of Plasmas 23 (5) (2016)
  109. Gubin K V, Lotov K V et al Journal of Applied Physics 120 (11) (2016)
  110. Amato E, Italiano A et al Nuclear Instruments And Methods In Physics Research Section A: Accelerators, Spectrometers, Detectors And Associated Equipment 811 1 (2016)
  111. Klenov G I, Khoroshkov V S Uspekhi Fizicheskikh Nauk 186 (8) 891 (2016)
  112. Margarone D, Velyhan A et al Phys. Rev. X 6 (4) (2016)
  113. Nishiuchi M, Sakaki H et al Plasma Phys. Rep. 42 (4) 327 (2016)
  114. Kim I J, Pae K H et al Physics of Plasmas 23 (7) (2016)
  115. Vay Je-L, Lehe R Rev. Accl. Sci. Tech. 09 165 (2016)
  116. Schillaci F, Cirrone G A P et al J. Inst. 11 (12) C12052 (2016)
  117. Lezhnin K V, Kamenets F F et al Physics of Plasmas 23 (5) (2016)
  118. Yogo A, Bulanov S V et al Plasma Phys. Control. Fusion 58 (2) 025003 (2016)
  119. Chukbar K V Plasma Phys. Rep. 42 (12) 1134 (2016)
  120. Bulanov S  S, Esarey E et al Phys. Rev. Lett. 114 (10) (2015)
  121. Bychenkov V Yu, Brantov A V et al Uspekhi Fizicheskikh Nauk 185 (1) 77 (2015) [Bychenkov V Yu, Brantov A V et al Phys.-Usp. 58 (1) 71 (2015)]
  122. (Laser Acceleration of Electrons, Protons, and Ions III; and Medical Applications of Laser-Generated Beams of Particles III) Vol. Laser Acceleration of Electrons, Protons, and Ions III; and Medical Applications of Laser-Generated Beams of Particles IIIMaximum attainable ion energy in the radiation pressure acceleration regimeKenneth W. D.LedinghamKlausSpohrPaulMcKennaPaul R.BoltonEricEsareyCarl B.SchroederFlorian J.GrünerS. S.BulanovE.EsareyC. B.SchroederS. V.BulanovT. Z.EsirkepovM.KandoF.PegoraroW. P.Leemans9514 (2015) p. 95140G
  123. Lezhnin K V, Kamenets F F et al Physics of Plasmas 22 (3) (2015)
  124. Nishiuchi M, Sakaki H et al Physics of Plasmas 22 (3) (2015)
  125. Bulanov S  S, Esarey E et al Phys. Rev. ST Accel. Beams 18 (6) (2015)
  126. (Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers II) Vol. Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers IITowards the effect of transverse inhomogeneity of electromagnetic pulse on the process of ion acceleration in the RPDA regimeGeorgKornLuis O.SilvaK. V.LezhninF. F.KamenetsV. S.BeskinM.KandoT. Z.EsirkepovS. V.Bulanov9515 (2015) p. 95151L

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions