Issues

 / 

2013

 / 

August

  

Reviews of topical problems


Quantum transport and electroweak baryogenesis


Deutsche Elektronen Synchrotron DESY, Notkestrasse 85, Hamburg, 22607, Germany

We review the mechanism of electroweak baryogenesis. Our focus is on the derivation of quantum transport equations from first principles within the Schwinger—Keldysh formalism. We emphasize the importance of the semiclassical force approach, which provides reliable predictions in most models. In the light of recent electric dipole moment measurements and given the results on new physics searches from collider experiments, the status of electroweak baryogenesis is discussed in a variety of models.

Fulltext is available at IOP
PACS: 05.60.Gg, 12.15.−y, 12.60.Jv (all)
DOI: 10.3367/UFNe.0183.201308a.0785
URL: https://ufn.ru/en/articles/2013/8/a/
Citation: Konstandin T "Quantum transport and electroweak baryogenesis" Phys. Usp. 56 747–771 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 9th, October 2012, 2nd, November 2012

Оригинал: Констандин Т «Квантовая теория явлений переноса и электрослабый бариогенезис» УФН 183 785–814 (2013); DOI: 10.3367/UFNr.0183.201308a.0785

References (155) Cited by (47) Similar articles (20) ↓

  1. V.A. Matveev, V.A. Rubakov et alNonconservation of baryon number under extremal conditions31 916–939 (1988)
  2. Ch. Grojean “New approaches to electroweak symmetry breaking50 1–35 (2007)
  3. E.P. Shabalin “What can be expected from the further study of CP and T symmetry violation and CPT invariance tests44 895–918 (2001)
  4. M.I. Vysotskii, R.B. Nevzorov “Selected problems of supersymmetry phenomenology44 919–930 (2001)
  5. P.I. Arseev “On the nonequilibrium diagram technique: derivation, some features and applications58 1159–1205 (2015)
  6. A.G. Drutskoy “Experiments at the ILC linear collider: expected physical results62 450–464 (2019)
  7. N.V. Krasnikov, V.A. Matveev “The search for new physics at the Large Hadron Collider47 643–670 (2004)
  8. V.A. Novikov “Nonperturbative QCD and supersymmetric QCD47 109–116 (2004)
  9. D.S. Gorbunov, S.L. Dubovskii, S.V. Troitskii “Gauge mechanism of mediation of supersymmetry breaking42 623 (1999)
  10. A.A. Ansel’m, N.G. Ural’tsev, V.A. Khoze “Higgs particles28 113–135 (1985)
  11. B.A. Arbuzov “Models for violation of CP invariance11 493–499 (1969)
  12. P.I. Arseev, N.S. Maslova “Electron — vibration interaction in tunneling processes through single molecules53 1151–1169 (2010)
  13. V.A. Rubakov “Large and infinite extra dimensions44 871–893 (2001)
  14. A.P. Serebrov “Fundamental interactions involving neutrons and neutrinos: reactor-based studies led by the Petersburg Nuclear Physics Institute (National Research Center "Kurchatov Institute") [PNPI (NRC KI)]58 1074–1094 (2015)
  15. A. Aubert “K0 three body decays11 482–488 (1969)
  16. V.B. Adamskii “Local invariance and the theory of compensating fields4 607–616 (1962)
  17. Yu.L. Klimontovich, V.P. Silin “The spectra of systems of interacting particles and collective energy losses during passage of charged particles through matter3 84–114 (1960)
  18. S. Peigné, A.V. Smilga “Energy losses in relativistic plasmas: QCD versus QED52 659–685 (2009)
  19. V.B. Shikin, Yu.V. Shikina “Charged dislocations in semiconductor crystals38 845–875 (1995)
  20. I.V. Krive, A.S. Rozhavskii “Fractional charge in quantum field theory and solid-state physics30 370–392 (1987)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions