Issues

 / 

2012

 / 

May

  

Instruments and methods of investigation


Photoemission from metal nanoparticles

 a, b,  a, b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Plasmonics LTD, Nizhnie Polya str., d. 29, str. 1, p. 1, off. 2, Moscow, 109382, Russian Federation

The approach of A M Brodsky and Yu Ya Gurevich is generalized to photoemission from metal nanoparticles at the excitation of a localized plasmon resonance (LPR) in them. The cross section and the probability amplitude of photoemission from a nanoparticle are obtained analytically, taking into account the LPR excitation and the electromagnetic field and photoelectron mass changes at the metal—environment interface. An increase by two orders of magnitude in the photocurrent from a layer of Au nanoparticles to silicon compared to a bulk Au layer is predicted due to an increase in the electromagnetic field strength under the excitation of LPR and due to a significant part of the nanoparticle surface being nonparallel to the incident field polarization. Practicable applications of the results include improving the performance of photocells and photodetectors, and probably reducing the minimum photoeffect time.

Fulltext pdf (639 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0182.201205e.0543
PACS: 42.79.Pw, 79.60.Jv, 85.60.Gz, 88.40.hj (all)
DOI: 10.3367/UFNe.0182.201205e.0543
URL: https://ufn.ru/en/articles/2012/5/e/
000307559000005
2-s2.0-84864971557
2012PhyU...55..508P
Citation: Protsenko I E, Uskov A V "Photoemission from metal nanoparticles" Phys. Usp. 55 508–518 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 22nd, March 2011, revised: 10th, June 2011, 16th, June 2011

Оригинал: Проценко И Е, Усков А В «Фотоэмиссия из металлических наночастиц» УФН 182 543–554 (2012); DOI: 10.3367/UFNr.0182.201205e.0543

References (45) ↓ Cited by (52) Similar articles (6)

  1. Maier S A Plasmonics: Fundamentals And Applications (New York: Springer, 2007)
  2. Novotny L, Hecht B Principles Of Nano-optics (Cambridge: Cambridge Univ. Press, 2006)
  3. Brongersma M L, Kik P G (Eds) Surface Plasmon Nanophotonics (Kik: Springer, 2007)
  4. Klimov V V Nanoplazmonika (M.: Fizmatlit, 2009)
  5. Wang F, Shen Y R Phys. Rev. Lett. 97 206806 (2006)
  6. Hövel H et al. Phys. Rev. B 48 18178 (1993)
  7. Schuller J A et al. Nature Mater. 9 193 (2010)
  8. Khlebtsov N G Kvantovaya Elektronika 38 504 (2008); Khlebtsov N G Quantum Electron. 38 504 (2008)
  9. Kneipp K, Moskovits M, Kneipp H (Eds) Surface-enhanced Raman Scattering: Physics And Applications (Berlin: Springer-Verlag, 2006)
  10. Homola J, Yee S S, Gauglitz G Sensors Actuators B 54 3 (1999)
  11. Zhao J et al. Nanomedicine 1 (2) 219 (2006)
  12. Bergman D J, Stockman M I Phys. Rev. Lett. 90 027402 (2003)
  13. Protsenko I E et al. Phys. Rev. A 71 063812 (2005)
  14. Noginov M A et al. Nature 460 1110 (2009)
  15. Oulton R F et al. Nature 461 629 (2009)
  16. Catchpole K R, Polman A Opt. Express 16 21793 (2008)
  17. Atwater H A, Polman A Nature Mater. 9 205 (2010)
  18. Dement’eva O V i dr. Vtoroi Mezhdunarodnyi Forum po Nanotekhnologiyam (Rusnanotech-2009) Moskva, 6 - 9 okt. 2009
  19. Mühlschlegel P et al. Science 308 1607 (2005)
  20. Greffet J-J Science 308 1561 (2005)
  21. Klimov V V Usp. Fiz. Nauk 173 1008 (2003); Klimov V V Phys. Usp. 46 979 (2003)
  22. Monestier F et al. Solar Energy Mater. Solar Cells 91 405 (2006)
  23. Rand B P, Forrest S R Patent US2006032529(A1, 2006)
  24. Westphalen M et al. Solar Energy Mater. Solar Cells 61 97 (2000)
  25. Brodskii A M, Gurevich Yu Ya Teoriya Elektronnoi Emissii iz Metallov (M.: Nauka, 1973)
  26. Sze S M Physics Of Semiconductor Devices (New York: Wiley, 1981); Zi C Fizika Poluprovodnikovykh Priborov (M.: Mir, 1984)
  27. Soole J B D, Schumacher H IEEE J. Quantum Electron. 27 737 (1991)
  28. Ito M, Wada O IEEE J. Quantum Electron. 22 1073 (1986)
  29. Piotrowski J, Galus W, Grudzien M Infrared Phys. 31 1 (1991)
  30. Yu Z et al. Appl. Phys. Lett. 89 151116 (2006)
  31. Shchelev M Ya Usp. Fiz. Nauk 170 1002 (2000); Shchelev M Ya Phys. Usp. 43 931 (2000)
  32. Hetterich J et al. IEEE J. Quantum Electron. 43 855 (2007)
  33. Nolle E L, Shchelev M Ya Pis’ma ZhTF 30 (8) 1 (2004); Nollé É, Shchelev M Ya Tech. Phys. Lett. 30 304 (2004)
  34. Nolle E L, Shchelev M Ya Zh. Tekh. Fiz. 75 (11) 136 (2005); Nolle E, Schelev M Ya Tech. Phys. 50 1528 (2005)
  35. Nolle E L Usp. Fiz. Nauk 177 1133 (2007); Nolle É L Phys. Usp. 50 1079 (2007)
  36. "Dipole nano-lasers and related devices" Electromagnetic Radiation, InTech, to be published
  37. Fowler R H Phys. Rev. 38 45 (1931)
  38. Uskov A V Sbornik tezisov dokladov uchastnikov vtorogo mezhdunarod. foruma po nanotekhnologiyam (M., 2009) p. 94
  39. Bottcher C J F Theory Of Electric Polarization Vol. 1 (Amsterdam: Elsevier, 1952)
  40. Meier M, Wokaun A Opt. Lett. 8 581 (1983)
  41. Dutta A, Mazhari B, Visweswaran G S Semiconductor Devices, Schottky Barrier Height (Dehli: NPTEL Online-IIT, 2011); Dutta A, Mazhari B, Visweswaran G S http://ecourses.vtu.ac.in/nptel/courses/Webcourse-contents/IIT-Delhi/Semiconductor%20Devices/index.htm
  42. Kittel Ch Introduction To Solid State Physics (New York: Wiley, 1956); Kittel’ Ch Vvedenie v Fiziku Tverdogo Tela (M.: Fizmatgiz, 1962)
  43. Weber M J Handbook Of Optical Materials (Boca Raton: CRC Press, 2003)
  44. Adachi S, Mori H, Ozaki S Phys. Rev. B 66 153201 (2002)
  45. Hicks E M et al. Nano Lett. 5 1065 (2005)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions