Issues

 / 

2012

 / 

December

  

Methodological notes


Angular beam width of a slit-diffracted wave with noncollinear group and phase velocities


Institute of Radio Engineering and Electronics, Russian Academy of Sciences, pl. Vvedenskogo 1, Fryazino, Moscow Region, 141120, Russian Federation

Taking magnetostatic surface wave diffraction as an example, this paper theoretically investigates the 2D diffraction pattern arising in the far-field region of a ferrite slab in the case of a plane wave with noncollinear group and phase velocities incident on a wide, arbitrarily oriented slit in an opaque screen. A universal analytical formula for the angular width of a diffracted beam is derived, which is valid for magnetostatic and other types of waves in anisotropic media and structures (including metamaterials) in 2D geometries. It is shown that the angular width of a diffracted beam in an anisotropic medium can not only take values greater or less than $\lambda_0/D$ (where $\lambda_0$ is the incident wavelength, and $D$ is the slit width), but can also be zero under certain conditions.

Fulltext pdf (1.1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.0182.201212e.1327
PACS: 41.20.Gz, 41.20.Jb, 42.25.Fx, 75.70.−i (all)
DOI: 10.3367/UFNe.0182.201212e.1327
URL: https://ufn.ru/en/articles/2012/12/e/
000315989900005
2-s2.0-84875174749
2012PhyU...55.1239L
Citation: Lock E H "Angular beam width of a slit-diffracted wave with noncollinear group and phase velocities" Phys. Usp. 55 1239–1254 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 4th, April 2011, revised: 5th, September 2011, 4th, October 2011

Оригинал: Локк Э Г «Угловая ширина луча при дифракции на щели волны с неколлинеарными групповой и фазовой скоростями» УФН 182 1327–1343 (2012); DOI: 10.3367/UFNr.0182.201212e.1327

References (54) Cited by (21) Similar articles (20) ↓

  1. E.H. Lock “The properties of isofrequency dependences and the laws of geometrical opticsPhys. Usp. 51 375–393 (2008)
  2. A.V. Vashkovsky, E.H. Lock “On the relationship between magnetostatic wave energy and dispersion characteristics in ferrite structuresPhys. Usp. 54 281–290 (2011)
  3. A.V. Vashkovskii, E.H. Lock “Negative refractive index for a surface magnetostatic wave propagating through the boundarybetween a ferrite and ferrite-insulator-metal mediaPhys. Usp. 47 601–605 (2004)
  4. E.H. Lock, S.V. Gerus “Electromagnetic waves in tangentially magnetized bi-gyrotropic layer (with an example of analysis of spin wave characteristics in a ferrite plate)Phys. Usp., accepted
  5. M.V. Davidovich “On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting platePhys. Usp. 53 595–609 (2010)
  6. A.D. Pryamikov, A.S. Biriukov “Excitation of cyclical Sommerfeld waves and Wood’s anomalies in plane wave scattering from a dielectric cylinder at oblique incidencePhys. Usp. 56 813–822 (2013)
  7. V.G. Niz’ev “Dipole-wave theory of electromagnetic diffractionPhys. Usp. 45 553–559 (2002)
  8. F.V. Ignaovich, V.K. Ignatovich “Optics of anisotropic mediaPhys. Usp. 55 709–720 (2012)
  9. A.G. Shalashov, E.D. Gospodchikov “Structure of the Maxwell equations in the region of linear coupling of electromagnetic waves in weakly inhomogeneous anisotropic and gyrotropic mediaPhys. Usp. 55 147–160 (2012)
  10. I.N. Toptygin, G.D. Fleishman “Eigenmode generation by a given current in anisotropic and gyrotropic mediaPhys. Usp. 51 363–374 (2008)
  11. A.V. Kukushkin, A.A. Rukhadze, K.Z. Rukhadze “On the existence conditions for a fast surface wavePhys. Usp. 55 1124–1133 (2012)
  12. A.G. Shalashov, E.D. Gospodchikov “Impedance technique for modeling of electromagnetic wave propagation in anisotropic and gyrotropic mediaPhys. Usp. 54 145–165 (2011)
  13. A.V. Shchagin “Fresnel coefficients for parametric X-ray (Cherenkov) radiationPhys. Usp. 58 819–827 (2015)
  14. S.A. Afanas’ev, D.I. Sementsov “Energy fluxes during the interference of electromagnetic wavesPhys. Usp. 51 355–361 (2008)
  15. I.N. Toptygin “Quantum description of a field in macroscopic electrodynamics and photon properties in transparent mediaPhys. Usp. 60 935–947 (2017)
  16. V.P. Makarov, A.A. Rukhadze “Material equations and Maxwell equations for isotropic media; waves with negative group velocity and negative values of ε (ω) and μ (ω)Phys. Usp. 62 487–495 (2019)
  17. K.S. Vul’fson “Angular momentum of electromagnetic wavesSov. Phys. Usp. 30 724–728 (1987)
  18. V.L. Ginzburg “The laws of conservation of energy and momentum in emission of electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamicsSov. Phys. Usp. 16 434–439 (1973)
  19. K.S. Vul’fson, L.P. Kovrigin “Observation of Sommerfeld diffraction from a specularly reflecting half-planeSov. Phys. Usp. 11 132–132 (1968)
  20. Ya.E. Amstislavskii “Experiments on Fresnel diffraction by a narrow transparent ring in an opaque screenSov. Phys. Usp. 7 51–53 (1964)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions