Issues

 / 

2012

 / 

December

  

Methodological notes


Angular beam width of a slit-diffracted wave with noncollinear group and phase velocities


Institute of Radio Engineering and Electronics, Russian Academy of Sciences, pl. Vvedenskogo 1, Fryazino, Moscow Region, 141120, Russian Federation

Taking magnetostatic surface wave diffraction as an example, this paper theoretically investigates the 2D diffraction pattern arising in the far-field region of a ferrite slab in the case of a plane wave with noncollinear group and phase velocities incident on a wide, arbitrarily oriented slit in an opaque screen. A universal analytical formula for the angular width of a diffracted beam is derived, which is valid for magnetostatic and other types of waves in anisotropic media and structures (including metamaterials) in 2D geometries. It is shown that the angular width of a diffracted beam in an anisotropic medium can not only take values greater or less than $\lambda_0/D$ (where $\lambda_0$ is the incident wavelength, and $D$ is the slit width), but can also be zero under certain conditions.

Fulltext pdf (1.1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.0182.201212e.1327
PACS: 41.20.Gz, 41.20.Jb, 42.25.Fx, 75.70.−i (all)
DOI: 10.3367/UFNe.0182.201212e.1327
URL: https://ufn.ru/en/articles/2012/12/e/
000315989900005
2-s2.0-84875174749
2012PhyU...55.1239L
Citation: Lock E H "Angular beam width of a slit-diffracted wave with noncollinear group and phase velocities" Phys. Usp. 55 1239–1254 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 4th, April 2011, revised: 5th, September 2011, 4th, October 2011

Оригинал: Локк Э Г «Угловая ширина луча при дифракции на щели волны с неколлинеарными групповой и фазовой скоростями» УФН 182 1327–1343 (2012); DOI: 10.3367/UFNr.0182.201212e.1327

References (54) Cited by (20) ↓ Similar articles (20)

  1. Gerus S V, Annenkov A Yu, Lokk E H Bull. Russ. Acad. Sci. Phys. 86 1019 (2022)
  2. Gerus S V, Annenkov A Yu, Lock E H Journal Of Magnetism And Magnetic Materials 563 169747 (2022)
  3. Gerus S V, Lock E H et al Bull. Russ. Acad. Sci. Phys. 86 1361 (2022)
  4. Khutieva A B, Sadovnikov A V et al Bull. Russ. Acad. Sci. Phys. 85 1205 (2021)
  5. Gerus S V, Lock E H, Annenkov A Yu J. Commun. Technol. Electron. 66 1378 (2021)
  6. Lock E H Bull. Russ. Acad. Sci. Phys. 84 134 (2020)
  7. Gerus S V, Lock E H, Annenkov A Yu Bull. Russ. Acad. Sci. Phys. 84 587 (2020)
  8. Lock E H J. Commun. Technol. Electron. 65 265 (2020)
  9. Annenkov A Yu, Gerus S V, Lock E H Bull. Russ. Acad. Sci. Phys. 84 141 (2020)
  10. Annenkov A Yu, Gerus S V et al EPJ Web Conf. 185 02006 (2018)
  11. Annenkov A Yu, Gerus S V, Lock E H EPL 123 44003 (2018)
  12. Sadovnikov A V, Grachev A A et al Jetp Lett. 108 312 (2018)
  13. Lokk E G J. Commun. Technol. Electron. 63 915 (2018)
  14. Lock E H Bull. Russ. Acad. Sci. Phys. 81 996 (2017)
  15. Lokk E G J. Commun. Technol. Electron. 62 251 (2017)
  16. Gerus, Gerus S i dr Electromagnetic field and materials (fundamental physical research) »with international participation, (2016) p. 165
  17. Gerus, Gerus S i dr Electromagnetic field and materials (fundamental physical research) »with international participation, (2016) p. 171
  18. Gerus, Gerus S i dr Electromagnetic field and materials (fundamental physical research) »with international participation, (2016) p. 158
  19. Lokk, Lokk E Electromagnetic field and materials (fundamental physical research) »with international participation, (2016) p. 149
  20. Lokk E G J. Commun. Technol. Electron. 60 97 (2015)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions