Issues

 / 

2012

 / 

November

  

Reviews of topical problems


Light propagation in composite materials with gain layers

 a, b,  a, b,  a, b,  c,  a, b
a Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation
b Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi, Moscow Region, 141700, Russian Federation
c Department of Physics, Queens College of the City University of New York, Flushing, New York, USA

Light propagation through a single gain layer and a multilayer system with gain layers is studied. Results obtained using the Fresnel formulas, Airy’s series summation, and the numerical solution of the nonlinear Maxwell—Bloch equations by the finite difference time domain (FDTD) method are analyzed and compared. Normal and oblique propagation of a wave through a gain layer and a slab of a photonic crystal are examined. For the latter problem, the gain line may be situated in either the pass or stop band of the photonic crystal. It is shown that the monochromatic plane-wave approximation is generally inapplicable for active media, because it leads to results that violate causality. But the problem becomes physically meaningful and correct results can be obtained for all three approaches once the structure of the wavefront and the finite aperture of the beam are taken into account.

Fulltext is available at IOP
PACS: 41.20.Jb, 42.70.Qs, 73.20.−r (all)
DOI: 10.3367/UFNe.0182.201211b.1157
URL: https://ufn.ru/en/articles/2012/11/b/
Citation: Dorofeenko A V, Zyablovsky A A, Pukhov A A, Lisyansky A A, Vinogradov A P "Light propagation in composite materials with gain layers" Phys. Usp. 55 1080–1097 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 27th, October 2010, revised: 16th, July 2012, 2nd, August 2012

Оригинал: Дорофеенко А В, Зябловский А А, Пухов А А, Лисянский А А, Виноградов А П «Прохождение света через композитные материалы, содержащие усиливающие слои» УФН 182 1157–1175 (2012); DOI: 10.3367/UFNr.0182.201211b.1157

References (101) Cited by (42) ↓ Similar articles (20)

  1. Krasnok A, Alu A Proc. IEEE 108 628 (2020)
  2. Novitsky D V J. Opt. 21 085101 (2019)
  3. Zyablovsky A A, Doronin I V et al Opt. Express 27 35376 (2019)
  4. Doronin I V, Andrianov E S et al Opt. Express 27 10991 (2019)
  5. Cahyono E, Nyoman S I et al J. Phys.: Conf. Ser. 1218 012002 (2019)
  6. Tananaev P N, Yankovskii G M, Baryshev A V J. Phys.: Conf. Ser. 1092 012148 (2018)
  7. Shramkova O V, Makris K G et al Photon. Res. 6 A1 (2018)
  8. Vinogradov A P, Dorofeenko A V et al Phys. Rev. B 97 (23) (2018)
  9. Markel V A J. Opt. Soc. Am. B 35 533 (2018)
  10. Jahromi A K, Shabahang S et al ACS Photonics 4 1026 (2017)
  11. Jahromi A K, Cerjan A et al Conference on Lasers and Electro-Optics, (2017) p. FTh3D.4
  12. Gevorgyan A H Opt. Spectrosc. 122 147 (2017)
  13. Jahromi A K, Cerjan A et al Frontiers in Optics 2017, (2017) p. JTu3A.104
  14. Zyablovsky A A, Nechepurenko I A et al Phys. Rev. B 95 (20) (2017)
  15. Nefedkin N E, Andrianov E S et al Opt. Express 25 2790 (2017)
  16. Nechepurenko I A, Dorofeenko A V et al J. Commun. Technol. Electron. 62 1209 (2017)
  17. Shramkova O V, Tsironis G P Sci Rep 7 (1) (2017)
  18. Shramkova O V 2016 IEEE International Conference on Mathematical Methods in Electromagnetic Theory (MMET), (2016) p. 134
  19. Shen F, An N et al 6 1063 (2016)
  20. Gevorgyan A H, Kocharian A N, Vardanyan G A Liquid Crystals 43 448 (2016)
  21. Shramkova O V, Makris K G et al Frontiers in Optics 2016, (2016) p. FF3H.5
  22. Shishkov V Yu, Zyablovskii A A et al J. Commun. Technol. Electron. 61 551 (2016)
  23. Shramkova O V, Tsironis G P Phys. Rev. B 94 (3) (2016)
  24. Jahromi A K, Abouraddy A F Optica 3 1194 (2016)
  25. Zyablovsky A A, Andrianov E S, Pukhov A A Sci Rep 6 (1) (2016)
  26. Nefedkin N E, Andrianov E S et al Opt. Express 24 3464 (2016)
  27. Xie Ya-M, Tan W, Wang Zh-G Opt. Express 23 2091 (2015)
  28. Shishkov V Yu, Zyablovsky A A et al Phys. Rev. B 92 (24) (2015)
  29. Wang L-G, Wang L et al Phys. Rev. Lett. 114 (8) (2015)
  30. Goncharenko A V, Nazarov V U Opt. Express 23 20439 (2015)
  31. Jahromi A K, Abouraddy A F Advanced Photonics 2015, (2015) p. IT4A.4
  32. Baranov D  G, Zyablovsky A  A et al Phys. Rev. Lett. 114 (8) (2015)
  33. Sydorchuk N, Prosvirnin S 2015 XXth IEEE International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), (2015) p. 54
  34. Electromagnetic Phenomena in Matter (2015) p. 689
  35. Zyablovsky A A, Vinogradov A P et al Uspekhi Fizicheskikh Nauk 184 1177 (2014) [Zyablovsky A A, Vinogradov A P et al Phys.-Usp. 57 1063 (2014)]
  36. Lozovik Yu E, Nechepurenko I A et al Laser Phys. Lett. 11 125701 (2014)
  37. (Liquid Crystals XVIII) Vol. Liquid Crystals XVIIIOn a photonic density of states of cholesteric liquid crystal cellsIam ChoonKhooK. B.OganesyanA. H.GevorgyanA. N.KocharianG. A.VardanyanYu. S.ChilingaryanE. A.SantrosyanY. V.Rostovtsev9182 (2014) p. 91821B
  38. Gevorgyan A H, Oganesyan K B et al Laser Phys. 24 115801 (2014)
  39. Baranov D G, Vinogradov A P et al Opt. Lett. 38 2002 (2013)
  40. Mal’nev V N, Shewamare S Physica B: Condensed Matter 426 52 (2013)
  41. Magnitskiy S, Nagorskiy N et al Nat Commun 4 (1) (2013)
  42. Savelev R S, Shadrivov I V et al Phys. Rev. B 87 (11) (2013)

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions