Issues

 / 

2011

 / 

May

  

Methodological notes


A rigorous minimum-assumption derivation of the Lorentz transformation


College of Physics Science and Technology, Heilongjiang University, Xuefu Road 74 , Harbin, Heilongjiang Province, 150080, China

The available derivations of the Lorentz transformation (LT) are of questionable validity because they introduce some assumptions in addition to Einstein’s two fundamental postulates or, even if they do not do so, are highly abstract and abstruse (as is the case with two or three ’exact’ derivations). The rigorous LT derivation proposed in this paper has only the constant speed of light and two thought experiments as its underlying assumptions. With the constant speed of light used to prove all the necessary assumptions, no additional assumptions are needed. Our systematic approach explains in a convincing way why stress is irrelevant to length contraction.

Fulltext pdf (124 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0181.201105g.0553
PACS: 01.40.−d, 03.30.+p (all)
DOI: 10.3367/UFNe.0181.201105g.0553
URL: https://ufn.ru/en/articles/2011/5/f/
000294814900006
2-s2.0-80051883302
2011PhyU...54..529H
Citation: Huang X-B "A rigorous minimum-assumption derivation of the Lorentz transformation" Phys. Usp. 54 529–532 (2011)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 13th, September 2010, 25th, November 2010

Оригинал: Хуан С-Б «Строгий вывод преобразования Лоренца на основе минимальных предположений» УФН 181 553–556 (2011); DOI: 10.3367/UFNr.0181.201105g.0553

References (9) Cited by (1) Similar articles (20) ↓

  1. Yu.I. Hovsepyan “Some notes on the relativistic Doppler effectPhys. Usp. 41 941–944 (1998)
  2. E.G. Bessonov “Another route to the Lorentz transformationsPhys. Usp. 59 475–479 (2016)
  3. S.I. Blinnikov, L.B. Okun, M.I. Vysotskii “Critical velocities c/sqrt{3} and c/sqrt{2} in the general theory of relativityPhys. Usp. 46 1099–1103 (2003)
  4. V.I. Ritus “Generalization of the k coefficient method in relativity to an arbitrary angle between the velocity of an observer (source) and the direction of the light ray from (to) a faraway source (observer) at restPhys. Usp. 63 601–610 (2020)
  5. G.B. Malykin “Application of the modified Duguay method for measuring the Lorentz contraction of a moving body lengthPhys. Usp. 64 1058–1062 (2021)
  6. G.B. Malykin “The relation of Thomas precession to Ishlinskii’s theorem as applied to the rotating image of a relativistically moving bodyPhys. Usp. 42 505–509 (1999)
  7. V.P. Makarov, A.A. Rukhadze “Force acting on a substance in an electromagnetic fieldPhys. Usp. 52 937–943 (2009)
  8. V.I. Ritus “Permutation asymmetry of the relativistic velocity addition law and non-Euclidean geometryPhys. Usp. 51 709–721 (2008)
  9. G.B. Malykin “Sagnac effect in ring lasers and ring resonators. How does the refraction index of the optical medium influence the sensitivity to rotation?Phys. Usp. 57 714–720 (2014)
  10. V.I. Ritus “On the difference between Wigner’s and Møller’s approaches to the description of Thomas precessionPhys. Usp. 50 95–101 (2007)
  11. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effectsPhys. Usp. 47 797–820 (2004)
  12. V.B. Morozov “On the question of the electromagnetic momentum of a charged bodyPhys. Usp. 54 371–374 (2011)
  13. V.A. Aleshkevich “On special relativity teaching using modern experimental dataPhys. Usp. 55 1214–1231 (2012)
  14. P.B. Ivanov “On relativistic motion of a pair of particles having opposite signs of massesPhys. Usp. 55 1232–1238 (2012)
  15. G.B. Malykin “Para-Lorentz transformationsPhys. Usp. 52 263–266 (2009)
  16. M.I. Krivoruchenko “Rotation of the swing plane of Foucault’s pendulum and Thomas spin precession: two sides of one coinPhys. Usp. 52 821–829 (2009)
  17. J. Gaite “The relativistic virial theorem and scale invariancePhys. Usp. 56 919–931 (2013)
  18. V.I. Ritus “Lagrange equations of motion of particles and photons in the Schwarzschild fieldPhys. Usp. 58 1118–1123 (2015)
  19. L.I. Antonov “Macroscopic representation of the magnetization vector field in a magnetic substancePhys. Usp. 46 1203–1207 (2003)
  20. G.B. Malykin “The Sagnac effect: correct and incorrect explanationsPhys. Usp. 43 1229 (2000)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions