Issues

 / 

2010

 / 

February

  

Reviews of topical problems


Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles


Institute of Spectroscopy, Russian Academy of Sciences, ul. Fizicheskaya 5, Troitsk, Moscow, 108840, Russian Federation

Unlike macroscopic objects, clusters and nanoparticles lack a definite melting temperature at a given pressure but rather have their solid and liquid phases coexistent in a certain temperature range and their melting temperature dependent on the particle size. As the particle size decreases, the melting temperature becomes fundamentally difficult to define. This review examines methods for measuring the melting temperature and the heat of melting of clusters and nanoparticles. The temperature (internal energy) of the particles is defined and how it affects the properties of and processes involving the particles is discussed. The melting features of clusters and nanoparticles versus bulk materials are examined. Early methods of determining the melting temperature of large clusters are described. New precision methods of measuring the melting temperature and the heat of melting of clusters are discussed, which use clusters themselves as “high-sensitivity calorimeters” to measure energy. Laser-based nanoparticle melting techniques are outlined.

Text can be downloaded in Russian. English translation is available on IOP Science.
PACS: 07.77.Gx, 32.80.−t, 36.40.−c, 36.40.Ei, 42.62.Fi, 81.07.−b (all)
DOI: 10.3367/UFNe.0180.201002d.0185
URL: https://ufn.ru/en/articles/2010/2/d/
Citation: Makarov G N "Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles" Phys. Usp. 53 179–198 (2010)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Макаров Г Н «Экспериментальные методы определения температуры и теплоты плавления кластеров и наночастиц» УФН 180 185–207 (2010); DOI: 10.3367/UFNr.0180.201002d.0185

References (249) Cited by (27) ↓ Similar articles (20)

  1. Tseretely G I, Belopolskaya T V et al BIOPHYSICS 64 14 (2019)
  2. Portnov V S, Yurov V M, Mausymbaeva A D J Min Sci 54 681 (2018)
  3. Melnikov G A Phys. Solid State 60 1000 (2018)
  4. Apatin V M, Makarov G N et al J. Exp. Theor. Phys. 127 244 (2018)
  5. Tsereteli G I, Belopolskaya T V et al BIOPHYSICS 62 43 (2017)
  6. Makarov G N Uspekhi Fizicheskikh Nauk 187 241 (2017)
  7. Kats A M Crystallogr. Rep. 62 993 (2017)
  8. Melnikov G, Yemelianov S et al IOP Conf. Ser.: Mater. Sci. Eng. 168 012021 (2017)
  9. Ivanov A S Journal Of Magnetism And Magnetic Materials 441 620 (2017)
  10. Apatin V M, Lokhman V N et al J. Exp. Theor. Phys. 125 531 (2017)
  11. Pogosov V V, Reva V I Phys. Metals Metallogr. 118 827 (2017)
  12. Apatin V M, Lokhman V N et al Jetp Lett. 104 425 (2016)
  13. Grunina N A, Tsereteli G I et al Carbohydrate Polymers 132 499 (2015)
  14. Belashchenko D K Russ. J. Phys. Chem. 89 516 (2015)
  15. Kats A M Crystallogr. Rep. 59 586 (2014)
  16. Basire M, Soudan J -M, Angelié C The Journal Of Chemical Physics 141 104304 (2014)
  17. Berry R S, Smirnov B M Uspekhi Fizicheskikh Nauk 183 1029 (2013) [Berry R S, Smirnov B M Phys.-Usp. 56 973 (2013)]
  18. Makarov G N Uspekhi Fizicheskikh Nauk 183 673 (2013) [Makarov G N Phys.-Usp. 56 643 (2013)]
  19. Rapallo A, Olmos-Asar J A et al J. Phys. Chem. C 116 17210 (2012)
  20. Gafner S L, Redel L V, Gafner Yu Ya J. Exp. Theor. Phys. 114 428 (2012)
  21. Gnatchenko E V, Nechay A N et al Low Temperature Physics 38 1139 (2012)
  22. Makarov G N Uspekhi Fizicheskikh Nauk 181 365 (2011)
  23. Gafner S L, Redel L V et al J Nanopart Res 13 6419 (2011)
  24. Bakhtinov A P, Kudrynskyi Z R, Litvin O S Phys. Solid State 53 2154 (2011)
  25. Magomedov M N Tech. Phys. 56 1277 (2011)
  26. Smirnov B M Uspekhi Fizicheskikh Nauk 181 713 (2011)
  27. Barybin A A, Shapovalov V I Tech. Phys. Lett. 36 1058 (2010)

© 1918–2019 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions