Reviews of topical problems

Fascination of chaos

Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

This review introduces most of the concepts used in the study of chaotic phenomena in nonlinear systems and has as its objective to summarize the current understanding of results from the theory of chaotic dynamical systems and to describe the original ideas underlying the study of deterministic chaos. The presentation relies on informal analysis, with abstract mathematical ideas visualized geometrically or by examples from physics. Hyperbolic dynamics, homoclinic trajectories and tangencies, wild hyperbolic sets, and different types of attractors which appear in dynamical systems are considered. The key aspects of ergodic theory are discussed, and the basic statistical properties of chaotic dynamical systems are described. The fundamental difference between stochastic dynamics and deterministic chaos is explained. The review concludes with an investigation of the possibility of studying complex systems on the basis of the analysis of registered signals, i.e., the generated time series.

Fulltext is available at IOP
PACS: 02.50.−r, 05.45.−a, 47.52.+j (all)
DOI: 10.3367/UFNe.0180.201012d.1305
Citation: Loskutov A "Fascination of chaos" Phys. Usp. 53 1257–1280 (2010)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Лоскутов А Ю «Очарование хаоса» УФН 180 1305–1329 (2010); DOI: 10.3367/UFNr.0180.201012d.1305

References (182) Cited by (31) Similar articles (20) ↓

  1. S.P. Kuznetsov “Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics54 119–144 (2011)
  2. K.V. Koshel, S.V. Prants “Chaotic advection in the ocean49 1151–1178 (2006)
  3. V.S. Anishchenko, T.E. Vadivasova et alStatistical properties of dynamical chaos48 151–166 (2005)
  4. O.G. Onishchenko, O.A. Pokhotelov et alStructure and dynamics of concentrated mesoscale vortices in planetary atmospheres63 683–697 (2020)
  5. B.M. Smirnov “Electrical cycle in the Earth’s atmosphere57 1041–1062 (2014)
  6. A.N. Vulfson, O.O. Borodin “The system of convective thermals as a generalized ensemble of Brownian particles59 109–120 (2016)
  7. O.G. Onishchenko, O.A. Pokhotelov, N.M. Astaf’eva “Generation of large-scale eddies and zonal winds in planetary atmospheres51 577–589 (2008)
  8. V.S. Anishchenko, A.B. Neiman et alStochastic resonance: noise-enhanced order42 7–36 (1999)
  9. G.I. Strelkova, V.S. Anishchenko “Spatio-temporal structures in ensembles of coupled chaotic systems63 145–161 (2020)
  10. F.V. Dolzhanskii, V.A. Krymov, D.Yu. Manin “Stability and vortex structures of quasi-two-dimensional shear flows33 (7) 495–520 (1990)
  11. A.L. Virovlyansky, D.V. Makarov, S.V. Prants “Ray and wave chaos in underwater acoustic waveguides55 18–46 (2012)
  12. A.A. Koronovskii, O.I. Moskalenko, A.E. Hramov “On the use of chaotic synchronization for secure communication52 1213–1238 (2009)
  13. V.V. Zosimov, L.M. Lyamshev “Fractals in wave processes38 347–384 (1995)
  14. V.P. Budaev, S.P. Savin, L.M. Zelenyi “Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport features54 875–918 (2011)
  15. L.Kh. Ingel, M.V. Kalashnik “Nontrivial features in the hydrodynamics of seawater and other stratified solutions55 356–381 (2012)
  16. Yu.L. Klimontovich “Nonlinear Brownian motion37 737–766 (1994)
  17. V.I. Klyatskin “Integral characteristics: a key to understanding structure formation in stochastic dynamic systems54 441–464 (2011)
  18. A.A. Chernyshov, K.V. Karelsky, A.S. Petrosyan “Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas57 421–452 (2014)
  19. V.I. Klyatskin “Clustering and diffusion of particles and passive tracer density in random hydrodynamic flows46 667–688 (2003)
  20. A.B. Medvinskii, S.V. Petrovskii et alSpatio-temporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamics45 27–57 (2002)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions