Issues

 / 

2010

 / 

January

  

Methodological notes


Submerged Landau jet: exact solutions, their meaning and application

 a,  b
a Blekinge Institute of Technology, Karlskrona, Sweden
b Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Exact hydrodynamic solutions generalizing the Landau submerged jet solution are reviewed. It is shown how exact inviscid solutions can be obtained and how boundary layer viscosity can be included by introducing parabolic coordinates. The use of exact solutions in applied hydrodynamics and acoustics is discussed. A historical perspective on the discovery of the class of exact solutions and on the analysis of their physical meaning is presented.

Fulltext pdf (390 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0180.201001f.0097
PACS: 43.25.Nm, 47.10.ad, 47.10.−g, 47.15.Uv, 47.60.Kz (all)
DOI: 10.3367/UFNe.0180.201001f.0097
URL: https://ufn.ru/en/articles/2010/1/e/
000278717900005
2-s2.0-77954785162
2010PhyU...53...91B
Citation: Broman G I, Rudenko O V "Submerged Landau jet: exact solutions, their meaning and application" Phys. Usp. 53 91–98 (2010)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Броман Г И, Руденко О В «Затопленная струя Ландау: точные решения, их смысл и приложения» УФН 180 97–104 (2010); DOI: 10.3367/UFNr.0180.201001f.0097

References (23) Cited by (30) ↓ Similar articles (14)

  1. Gaifullin A M, Zhvick V V Uspekhi Fizicheskikh Nauk 193 1214 (2023)
  2. [Gaifullin A M, Zhvick V V Phys. Usp. 66 1142 (2023)]
  3. Goruleva L S, Prosviryakov E Yu Tech. Phys. Lett. 48 258 (2022)
  4. Goruleva L S, Prosviryakov E Yu Procedia Structural Integrity 40 171 (2022)
  5. Lychagin V V, Roop M D Differential Geometry, Differential Equations, and Mathematical Physics Tutorials, Schools, And Workshops In The Mathematical Sciences Chapter 5 (2021) p. 151
  6. (THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2020)) Vol. THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2020)Asymptotic study of heat and mass transfer processes in viscous fluidsPetr A.VelmisovUsama J.Mizher2337 (2021) p. 120003
  7. Ershkov S V, Prosviryakov E Yu et al Fluid Dyn. Res. 53 044501 (2021)
  8. Bogovalov S V, Kislov V A, Tronin I V J. Phys.: Conf. Ser. 1696 012018 (2020)
  9. Prosviryakov E Yu Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya «Fiziko-matematicheskie Nauki» 24 319 (2020)
  10. Rudenko O V Dokl. Phys. 65 317 (2020)
  11. Lychagin V, Roop M Anal.Math.Phys. 10 (1) (2020)
  12. Gusarov A V 32 (8) (2020)
  13. Gusarov A V 32 (5) (2020)
  14. Ma Y-R, Jia W et al Sci Rep 9 (1) (2019)
  15. Jia W, Ma Y R et al Annals Of Physics 388 197 (2018)
  16. Velmisov P A, Mizher U J, Semenova E P (AIP Conference Proceedings) Vol. 2048 (2018) p. 040012
  17. Roop M 2018 Eleventh International Conference "Management of large-scale system development" (MLSD, (2018) p. 1
  18. Brutyan M A, Krapivsky P L Fluid Dyn 53 1 (2018)
  19. Bogovalov S, Kislov V, Tronin I J. Phys.: Conf. Ser. 788 012007 (2017)
  20. Aristov S N, Prosviryakov E Yu Fluid Dyn 51 581 (2016)
  21. Artyshev S G Theor Math Phys 186 148 (2016)
  22. Aristov S N, Privalova V V, Prosviryakov E Y Nelin. Dinam. 167 (2016)
  23. Aristov S N, Prosviryakov E Yu Theor Found Chem Eng 50 286 (2016)
  24. Bogovalov S V, Kislov V A, Tronin I V Theor. Comput. Fluid Dyn. 29 111 (2015)
  25. Lemanov V V, Terekhov V I et al Tech. Phys. Lett. 39 421 (2013)
  26. Betyaev S K J Eng Phys Thermophy 86 402 (2013)
  27. Broman G I, Rudenko O V Acoust. Phys. 58 537 (2012)
  28. Handbook of Nonlinear Partial Differential Equations, Second Edition (2011) p. 1795
  29. Rudenko O V Acoust. Phys. 56 457 (2010)
  30. Shamaev V G, Shamaev N V Autom. Doc. Math. Linguist. 44 224 (2010)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions