Issues

 / 

2010

 / 

January

  

Methodological notes


Submerged Landau jet: exact solutions, their meaning and application

 a,  b
a Blekinge Institute of Technology, Karlskrona, Sweden
b Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Exact hydrodynamic solutions generalizing the Landau submerged jet solution are reviewed. It is shown how exact inviscid solutions can be obtained and how boundary layer viscosity can be included by introducing parabolic coordinates. The use of exact solutions in applied hydrodynamics and acoustics is discussed. A historical perspective on the discovery of the class of exact solutions and on the analysis of their physical meaning is presented.

Fulltext pdf (390 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0180.201001f.0097
PACS: 43.25.Nm, 47.10.ad, 47.10.−g, 47.15.Uv, 47.60.Kz (all)
DOI: 10.3367/UFNe.0180.201001f.0097
URL: https://ufn.ru/en/articles/2010/1/e/
000278717900005
2-s2.0-77954785162
2010PhyU...53...91B
Citation: Broman G I, Rudenko O V "Submerged Landau jet: exact solutions, their meaning and application" Phys. Usp. 53 91–98 (2010)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Броман Г И, Руденко О В «Затопленная струя Ландау: точные решения, их смысл и приложения» УФН 180 97–104 (2010); DOI: 10.3367/UFNr.0180.201001f.0097

References (23) Cited by (31) ↓ Similar articles (15)

  1. Mukin D, Larionov N et al Powder Technology 470 121907 (2026)
  2. Mukin D V, Larionov N V et al SMTU Transactions 4 (3) 347 (2025)
  3. Gaifullin A M, Zhvick V V Uspekhi Fizicheskikh Nauk 193 (11) 1214 (2023) [Gaifullin A M, Zhvick V V Phys. Usp. 66 (11) 1142 (2023)]
  4. Goruleva L S, Prosviryakov E Yu Tech. Phys. Lett. 48 (7) 258 (2022)
  5. Goruleva L S, Prosviryakov E Yu Procedia Structural Integrity 40 171 (2022)
  6. Lychagin V V, Roop M D Differential Geometry, Differential Equations, and Mathematical Physics Tutorials, Schools, And Workshops In The Mathematical Sciences Chapter 5 (2021) p. 151
  7. (THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2020)) Vol. THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2020)Asymptotic study of heat and mass transfer processes in viscous fluidsPetr A.VelmisovUsama J.Mizher2337 (2021) p. 120003
  8. Ershkov S V, Prosviryakov E Yu et al Fluid Dyn. Res. 53 (4) 044501 (2021)
  9. Bogovalov S V, Kislov V A, Tronin I V J. Phys.: Conf. Ser. 1696 (1) 012018 (2020)
  10. Prosviryakov E Yu Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya «Fiziko-matematicheskie Nauki» 24 (2) 319 (2020)
  11. Rudenko O V Dokl. Phys. 65 (9) 317 (2020)
  12. Lychagin V, Roop M Anal.Math.Phys. 10 (1) (2020)
  13. Gusarov A V Physics of Fluids 32 (8) (2020)
  14. Gusarov A V Physics of Fluids 32 (5) (2020)
  15. Ma Y-R, Jia W et al Sci Rep 9 (1) (2019)
  16. Roop M 2018 Eleventh International Conference "Management of large-scale system development" (MLSD, (2018) p. 1
  17. Jia W, Ma Y R et al Annals Of Physics 388 197 (2018)
  18. Velmisov P A, Mizher U J, Semenova E P (AIP Conference Proceedings) Vol. 2048 (2018) p. 040012
  19. Brutyan M A, Krapivsky P L Fluid Dyn 53 (S2) 1 (2018)
  20. Bogovalov S, Kislov V, Tronin I J. Phys.: Conf. Ser. 788 012007 (2017)
  21. Aristov S N, Privalova V V, Prosviryakov E Y Nelin. Dinam. 167 (2016)
  22. Aristov S N, Prosviryakov E Yu Theor Found Chem Eng 50 (3) 286 (2016)
  23. Aristov S N, Prosviryakov E Yu Fluid Dyn 51 (5) 581 (2016)
  24. Artyshev S G Theor Math Phys 186 (2) 148 (2016)
  25. Bogovalov S V, Kislov V A, Tronin I V Theor. Comput. Fluid Dyn. 29 (1-2) 111 (2015)
  26. Lemanov V V, Terekhov V I et al Tech. Phys. Lett. 39 (5) 421 (2013)
  27. Betyaev S K J Eng Phys Thermophy 86 (2) 402 (2013)
  28. Broman G I, Rudenko O V Acoust. Phys. 58 (5) 537 (2012)
  29. Handbook of Nonlinear Partial Differential Equations, Second Edition (2011) p. 1795
  30. Shamaev V G, Shamaev N V Autom. Doc. Math. Linguist. 44 (4) 224 (2010)
  31. Rudenko O V Acoust. Phys. 56 (4) 457 (2010)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions