Methodological notes

Rotation of the swing plane of Foucault’s pendulum and Thomas spin precession: two sides of one coin

Russian Federation State Scientific Center A.I. Alikhanov Institute ofTheoretical and Experimental Physics, ul. Bolshaya Cheremushkinskaya 25, Moscow, 117259, Russian Federation

Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault’s pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect).

Fulltext is available at IOP
PACS: 01.65.+g, 02.40.Ky, 03.30.+p (all)
DOI: 10.3367/UFNe.0179.200908e.0873
Citation: Krivoruchenko M I "Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin" Phys. Usp. 52 821–829 (2009)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

:    «   : » 179 873–882 (2009); DOI: 10.3367/UFNr.0179.200908e.0873

References (26) Cited by (2) Similar articles (20) ↓

  1. V.I. Ritus “On the difference between Wigner’s and Møller’s approaches to the description of Thomas precession50 95–101 (2007)
  2. V.I. Ritus “Permutation asymmetry of the relativistic velocity addition law and non-Euclidean geometry51 709–721 (2008)
  3. V.B. Morozov “On the question of the electromagnetic momentum of a charged body54 371–374 (2011)
  4. V.A. Aleshkevich “On special relativity teaching using modern experimental data55 1214–1231 (2012)
  5. G.B. Malykin “The Sagnac effect: correct and incorrect explanations43 1229 (2000)
  6. G.B. Malykin “Para-Lorentz transformations52 263–266 (2009)
  7. Ya.A. Smorodinskii, V.A. Ugarov “Two paradoxes of the special theory of relativity15 340–346 (1972)
  8. G.B. Malykin “The relation of Thomas precession to Ishlinskii’s theorem as applied to the rotating image of a relativistically moving body42 505–509 (1999)
  9. V.S. Popov “Feynman disentangling f noncommuting operators and group representation theory50 1217–1238 (2007)
  10. P.B. Ivanov “On relativistic motion of a pair of particles having opposite signs of masses55 1232–1238 (2012)
  11. V.I. Ritus “Lagrange equations of motion of particles and photons in the Schwarzschild field58 1118–1123 (2015)
  12. S.I. Blinnikov, L.B. Okun, M.I. Vysotskii “Critical velocities c/sqrt{3} and c/sqrt{2} in the general theory of relativity46 1099–1103 (2003)
  13. E.G. Bessonov “Another route to the Lorentz transformations59 475–479 (2016)
  14. Yu.I. Hovsepyan “Some notes on the relativistic Doppler effect41 941–944 (1998)
  15. S.I. Syrovatskii “On the problem of the ’retardation’ of the relativistic contraction of moving bodies19 273–274 (1976)
  16. J. Gaite “The relativistic virial theorem and scale invariance56 919–931 (2013)
  17. G.B. Malykin “Sagnac effect in ring lasers and ring resonators. How does the refraction index of the optical medium influence the sensitivity to rotation?57 714–720 (2014)
  18. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effects47 797–820 (2004)
  19. A.A. Logunov “The relativistic theory of gravitation33 (8) 663–668 (1990)
  20. V.L. Pokrovsky “Landau and modern physics52 1169–1176 (2009)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions