Issues

 / 

2009

 / 

August

  

Methodological notes


Rotation of the swing plane of Foucault’s pendulum and Thomas spin precession: two sides of one coin


Russian Federation State Scientific Center A.I. Alikhanov Institute ofTheoretical and Experimental Physics, ul. Bolshaya Cheremushkinskaya 25, Moscow, 117259, Russian Federation

Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault’s pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect).

Fulltext is available at IOP
PACS: 01.65.+g, 02.40.Ky, 03.30.+p (all)
DOI: 10.3367/UFNe.0179.200908e.0873
URL: https://ufn.ru/en/articles/2009/8/e/
Citation: Krivoruchenko M I "Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin" Phys. Usp. 52 821–829 (2009)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

:    «   : » 179 873–882 (2009); DOI: 10.3367/UFNr.0179.200908e.0873

References (26) ↓ Cited by (2) Similar articles (20)

  1. Arnol’d V I Matematicheskie Metody Klassicheskoi Mekhaniki 3-e izd. (M.: Nauka, 1989); Arnold V I Mathematical Methods Of Classical Mechanics 2nd ed. (New York: Springer, 1997)
  2. Somerville W B Q. J. R. Astron. Soc. 13 40 (1972)
  3. Hart J B, Miller R E, Mills R E Am. J. Phys. 55 67 (1987); Rockower E B Am. J. Phys. 55 70 (1987)
  4. Shapere A, Wilczek F (Eds) Geometric Phases In Physics (Singapore: World Scientific, 1989)
  5. von Bergmann J, von Bergmann H C Am. J. Phys. 75 888 (2007)
  6. Borel É "La théorie de la relativité et la cinématique" C.R. Acad. Sci., Paris 156 215 (1913); Borel É "La cinématique dans la théorie de la relativité" C.R. Acad. Sci., Paris 157 703 (1913)
  7. Föppl L, Daniell P "Zur Kinematik des Born’schen starren Körpers" Gött. Nachr. 519 (1913)
  8. Silberstein L The Theory Of Relativity (London: MacMillan, 1914)
  9. Fermi E Rom. Acc. L. Rend. 31 (1) 21 (1922); Fermi E Rom. Acc. L. Rend. 31 (1) 51 (1922)
  10. Walker A G Proc. R. Soc. Edinb. 52 345 (1932)
  11. Thomas L H Nature 117 514 (1926); Thomas L H Philos. Mag. 7 3 1 (1927)
  12. Eddington A S The Mathematical Theory Of Relativity (Cambridge: Univ. Press, 1924)
  13. Wigner E P Ann. Math. 40 149 (1939)
  14. Walter S "The non-Euclidean style of Minkowskian relativity" In The Symbolic Universe: Geometry And Physics 1890 - 1930 (Ed. J Gray) (Oxford: Oxford Univ. Press, 1999) p. 91
  15. Aravind P K Am. J. Phys. 65 634 (1997)
  16. Landau L D, Lifshits E M Teoriya Polya (M.: Nauka, 1988); Landau L D, Lifshitz E M The Classical Theory Of Fields (Oxford: Pergamon Press, 1983)
  17. Rhodes J A, Semon M D Am. J. Phys. 72 943 (2004)
  18. Berry M Phys. Today 43 (12) 34 (1990)
  19. Møller C The Theory Of Relativity (Oxford: Clarendon Press, 1952)
  20. Landau L D, Lifshits E M Kvantovaya Mekhanika: Nerelyativistskaya Teoriya (M.: Nauka, 1989); Landau L D, Lifshitz E M Quantum Mechanics: Non-Relativistic Theory (Oxford: Pergamon Press, 1977)
  21. Giannini M M, Krivoruchenko M I Phys. Lett. B 291 329 (1992)
  22. Batty C J Nucl. Phys. A 585 229 (1995)
  23. Krivoruchenko M I, Faessler A Nucl. Phys. A 803 173 (2008)
  24. Bargmann V, Michel L, Telegdi V L Phys. Rev. Lett. 2 435 (1959)
  25. Krivoruchenko M I Pis’ma ZhETF 38 146 (1983); Krivoruchenko M I JETP Lett. 38 173 (1983)
  26. Kobzarev I Yu, Martem’yanov B V, Shchepkin M G Yad. Fiz. 44 475 (1986); Kobzarev I Yu, Martem’yanov B V, Shchepkin M G Sov. J. Nucl. Phys. 44 306 (1986)

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions