Issues

 / 

2009

 / 

May

  

Reviews of topical problems


Thermally stimulated electromagnetic fields of solids

 a,  b
a Institute of Spectroscopy, Russian Academy of Sciences, ul. Fizicheskaya 5, Troitsk, Moscow, 108840, Russian Federation
b Institute for Physics of Microstructures, Russian Academy of Sciences, ul. Ul'yanova 46, Nizhnii Novgorod, 603950, Russian Federation

Different ways to calculate the spectral properties of fluctuating electromagnetic fields produced by solids are reviewed, all of which essentially reduce to solving the Maxwell equations for a specified geometry and boundary conditions and then using the fluctuation-dissipation theorem. It is shown that in the practical case of plane-layered solids, all correlation characteristics of thermal fields can be expressed in terms of the Fresnel coefficients. The experimental results on thermally stimulated electromagnetic fields from solids are in qualitative and quantitative agreement with model calculations and theoretical expectations. The dispersion interaction between solid bodies in different thermodynamic states, the fluctuating fields as a means of body-to-body energy transfer, and the shift, broadening, and deexcitation of energy levels in a particle near a solid surface are discussed using the theory of thermally stimulated electromagnetic fields.

Fulltext pdf (2.3 MB)
Fulltext is also available at DOI: 10.3367/UFNe.0179.200905a.0449
PACS: 05.40.−a, 42.50.Lc, 71.36.+c (all)
DOI: 10.3367/UFNe.0179.200905a.0449
URL: https://ufn.ru/en/articles/2009/5/a/
000270071100001
2-s2.0-70449338046
2009PhyU...52..425V
Citation: Vinogradov E A, Dorofeyev I A "Thermally stimulated electromagnetic fields of solids" Phys. Usp. 52 425–459 (2009)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Виноградов Е А, Дорофеев И А «Термостимулированные электромагнитные поля твёрдых тел» УФН 179 449–485 (2009); DOI: 10.3367/UFNr.0179.200905a.0449

References (103) Cited by (66) Similar articles (20) ↓

  1. A.I. Volokitin, B.N.J. Persson “Radiative heat transfer and noncontact friction between nanostructuresPhys. Usp. 50 879–906 (2007)
  2. G.V. Dedkov, A.A. Kyasov “Fluctuation-electromagnetic interaction under dynamic and thermal nonequilibrium conditionsPhys. Usp. 60 559–585 (2017)
  3. E.A. Vinogradov “Semiconductor microcavity polaritonsPhys. Usp. 45 1213–1250 (2002)
  4. Yu.S. Barash, V.L. Ginzburg “Electromagnetic fluctuations in matter and molecular (Van-der- Waals) forces between themSov. Phys. Usp. 18 305–322 (1975)
  5. I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii “General theory of van der Waals’ forcesSov. Phys. Usp. 4 153–176 (1961)
  6. D.A. Kirzhnits “General properties of electromagnetic response functionsSov. Phys. Usp. 30 575–587 (1987)
  7. V.V. Zheleznyakov, V.V. Kocharovskii, V.V. Kocharovskii “Polarization waves and super-radiance in active mediaSov. Phys. Usp. 32 835–870 (1989)
  8. Yu.S. Barash, V.L. Ginzburg “Some problems in the theory of van der Waals forcesSov. Phys. Usp. 27 467–491 (1984)
  9. A.A. Rukhadze, V.P. Silin “Electrodynamics of media with spatial dispersionSov. Phys. Usp. 4 459–484 (1961)
  10. D.N. Zubarev “Double-time Green functions in statistical physicsSov. Phys. Usp. 3 320–345 (1960)
  11. V.V. Uchaikin “Fractional phenomenology of cosmic ray anomalous diffusionPhys. Usp. 56 1074–1119 (2013)
  12. V.M. Mostepanenko, N.N. Trunov “The Casimir effect and its applicationsSov. Phys. Usp. 31 965–987 (1988)
  13. G.R. Ivanitskii “21st century: what is life from the perspective of physics?Phys. Usp. 53 327–356 (2010)
  14. A.N. Vulfson, O.O. Borodin “The system of convective thermals as a generalized ensemble of Brownian particlesPhys. Usp. 59 109–120 (2016)
  15. V.V. Klimov “Control of the emission of elementary quantum systems using metamaterials and nanometaparticlesPhys. Usp. 64 990–1020 (2021)
  16. V.N. Rudenko, S.I. Oreshkin, K.V. Rudenko “Measuring global gravity-inertial effects with ring laser interferometersPhys. Usp. 65 920–951 (2022)
  17. V.V. Klimov “Optical nanoresonatorsPhys. Usp. 66 263–287 (2023)
  18. O.G. Bakunin “Reconstruction of streamline topology, and percolation models of turbulent transportPhys. Usp. 56 243–260 (2013)
  19. L.M. Zelenyi, A.V. Milovanov “Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamicsPhys. Usp. 47 749–788 (2004)
  20. V.I. Klyatskin “Clustering and diffusion of particles and passive tracer density in random hydrodynamic flowsPhys. Usp. 46 667–688 (2003)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions