Issues

 / 

2009

 / 

May

  

Reviews of topical problems


Thermally stimulated electromagnetic fields of solids

 a,  b
a Institute of Spectroscopy, Russian Academy of Sciences, ul. Fizicheskaya 5, Troitsk, Moscow, 108840, Russian Federation
b Institute for Physics of Microstructures, Russian Academy of Sciences, ul. Ul'yanova 46, Nizhnii Novgorod, 603950, Russian Federation

Different ways to calculate the spectral properties of fluctuating electromagnetic fields produced by solids are reviewed, all of which essentially reduce to solving the Maxwell equations for a specified geometry and boundary conditions and then using the fluctuation-dissipation theorem. It is shown that in the practical case of plane-layered solids, all correlation characteristics of thermal fields can be expressed in terms of the Fresnel coefficients. The experimental results on thermally stimulated electromagnetic fields from solids are in qualitative and quantitative agreement with model calculations and theoretical expectations. The dispersion interaction between solid bodies in different thermodynamic states, the fluctuating fields as a means of body-to-body energy transfer, and the shift, broadening, and deexcitation of energy levels in a particle near a solid surface are discussed using the theory of thermally stimulated electromagnetic fields.

Fulltext pdf (2.3 MB)
Fulltext is also available at DOI: 10.3367/UFNe.0179.200905a.0449
PACS: 05.40.−a, 42.50.Lc, 71.36.+c (all)
DOI: 10.3367/UFNe.0179.200905a.0449
URL: https://ufn.ru/en/articles/2009/5/a/
000270071100001
2-s2.0-70449338046
2009PhyU...52..425V
Citation: Vinogradov E A, Dorofeyev I A "Thermally stimulated electromagnetic fields of solids" Phys. Usp. 52 425–459 (2009)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Виноградов Е А, Дорофеев И А «Термостимулированные электромагнитные поля твёрдых тел» УФН 179 449–485 (2009); DOI: 10.3367/UFNr.0179.200905a.0449

References (103) Cited by (62) Similar articles (20) ↓

  1. A.I. Volokitin, B.N.J. Persson “Radiative heat transfer and noncontact friction between nanostructures50 879–906 (2007)
  2. G.V. Dedkov, A.A. Kyasov “Fluctuation-electromagnetic interaction under dynamic and thermal nonequilibrium conditions60 559–585 (2017)
  3. E.A. Vinogradov “Semiconductor microcavity polaritons45 1213–1250 (2002)
  4. Yu.S. Barash, V.L. Ginzburg “Electromagnetic fluctuations in matter and molecular (Van-der- Waals) forces between them18 305–322 (1975)
  5. I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii “General theory of van der Waals’ forces4 153–176 (1961)
  6. D.A. Kirzhnits “General properties of electromagnetic response functions30 575–587 (1987)
  7. V.V. Zheleznyakov, V.V. Kocharovskii, V.V. Kocharovskii “Polarization waves and super-radiance in active media32 835–870 (1989)
  8. Yu.S. Barash, V.L. Ginzburg “Some problems in the theory of van der Waals forces27 467–491 (1984)
  9. A.A. Rukhadze, V.P. Silin “Electrodynamics of media with spatial dispersion4 459–484 (1961)
  10. D.N. Zubarev “Double-time Green functions in statistical physics3 320–345 (1960)
  11. V.V. Uchaikin “Fractional phenomenology of cosmic ray anomalous diffusion56 1074–1119 (2013)
  12. V.M. Mostepanenko, N.N. Trunov “The Casimir effect and its applications31 965–987 (1988)
  13. G.R. Ivanitskii “21st century: what is life from the perspective of physics?53 327–356 (2010)
  14. A.N. Vulfson, O.O. Borodin “The system of convective thermals as a generalized ensemble of Brownian particles59 109–120 (2016)
  15. V.V. Klimov “Control of the emission of elementary quantum systems using metamaterials and nanometaparticles64 990–1020 (2021)
  16. V.N. Rudenko, S.I. Oreshkin, K.V. Rudenko “Measuring global gravity-inertial effects with ring laser interferometers65 920–951 (2022)
  17. V.V. Klimov “Optical nanoresonators66 263–287 (2023)
  18. O.G. Bakunin “Reconstruction of streamline topology, and percolation models of turbulent transport56 243–260 (2013)
  19. L.M. Zelenyi, A.V. Milovanov “Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics47 749–788 (2004)
  20. V.I. Klyatskin “Clustering and diffusion of particles and passive tracer density in random hydrodynamic flows46 667–688 (2003)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions