Issues

 / 

2009

 / 

March

  

Methodological notes


Is it possible to see the infinite future of the Universe when falling into a black hole?

 a,  b
a Herzen Russian State Pedagogical University, nab. r. Moiki 48, St. Petersburg, 191186, Russian Federation
b Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, prosp. Bolshoi 61, V.O., St. Petersburg, 199178, Russian Federation

A possibility to see the infinite future of the Universe by an astronaut falling into a black hole is discussed and ruled out.

Fulltext pdf (261 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0179.200903d.0279
PACS: 04.70.−s, 04.70.Bw, 97.60.Lf (all)
DOI: 10.3367/UFNe.0179.200903d.0279
URL: https://ufn.ru/en/articles/2009/3/d/
000267730600004
2-s2.0-68249149383
2009PhyU...52..257G
Citation: Grib A A, Pavlov Yu V "Is it possible to see the infinite future of the Universe when falling into a black hole?" Phys. Usp. 52 257–261 (2009)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Гриб А А, Павлов Ю В «Возможно ли увидеть бесконечное будущее Вселенной при падении в чёрную дыру?» УФН 179 279–283 (2009); DOI: 10.3367/UFNr.0179.200903d.0279

References (25) ↓ Cited by (12) Similar articles (7)

  1. Cherepashchuk A M Usp. Fiz. Nauk 173 345 (2003); Cherepashchuk A M Phys. Usp. 46 335 (2003)
  2. Logunov A A, Mestvirishvili M A Relyativistskaya Teoriya Gravitatsii (M.: Nauka, 1989); Logunov A A, Mestvirishvili M A The Relativistic Theory Of Gravitation (Moscow: Mir Publ., 1989)
  3. Schwarzschild K Berl. Ber. 189 (1916)
  4. Kerr R P Phys. Rev. Lett. 11 237 (1963)
  5. Reissner H Ann. Physik 355 106 (1916); Nordström G Kon. Nederland. Akad. Wet. Proc. 20 1238 (1918)
  6. Newman E T et al. J. Math. Phys. 6 918 (1965)
  7. Novikov I D, Frolov V P Fizika Chernykh Dyr (M.: Nauka, 1986); Frolov V P, Novikov I D Black Hole Physics: Basic Concepts And New Developments (Dordrecht: Kluwer, 1998)
  8. Landau L D, Lifshits E M Teoriya Polya (M.: Nauka, 1988); Landau L D, Lifshitz E M The Classical Theory Of Fields (Oxford: Pergamon Press, 1975)
  9. Ne’eman Yu Found. Phys. Lett. 7 483 (1994)
  10. Kruskal M D Phys. Rev. 119 1743 (1960); Szekeres G Publ. Mat. Debrecen 7 285 (1960)
  11. Eisenstaedt J Arch. Hist. Exact Sci. 27 157 (1982); Eizenshtedt Zh v Sb. Einshteinovskii Sbornik. 1984 - 1985 (Otv. red. I Yu Kobzarev) (M.: Nauka, 1988) p. 148
  12. Cherepashchuk A M Chernye Dyry vo Vselennoi (Fryazino: Vek 2, 2005)
  13. Cherepashchuk A M v Sb. Astronomiya: Vek XXI (Red.-sost. V G Surdin) (Fryazino: Vek 2, 2007) p. 219
  14. Hawking S The Universe In A Nutshell (New York: Bantam Books, 2001); Khoking S Mir v Orekhovoi Skorlupke (SPb.: Amfora, 2008)
  15. Regge T Cronache Dell’Universo (Torino: P. Boringhieri, 1981); Redzhe T Etyudy o Vselennoi (M.: Mir, 1985) p. 34
  16. Chandrasekhar S The Mathematical Theory Of Black Holes (Oxford: Oxford Univ. Press, 1983); Chandrasekar S Matematicheskaya Teoriya Chernykh Dyr (M.: Mir, 1986)
  17. Rees M Our Cosmic Habitat (Princeton, NJ: Princeton Univ. Press, 2001); Ris M Nasha Kosmicheskaya Obitel’ (M. - Izhevsk: Inst. komp’yut. issled., 2002)
  18. Zel’dovich Ya B, Novikov I D Teoriya Tyagoteniya i Evolyutsiya Zvezd (M.: Nauka, 1971)
  19. Misner C W, Thorne K S, Wheeler J A Gravitation (San Francisco: W.H. Freeman, 1973); Mizner Ch, Torn K, Uiler Dzh Gravitatsiya (M.: Mir, 1977)
  20. Hawking S W, Ellis G F R The Large Scale Structure Of Space-Time (Cambridge: Univ. Press, 1973); Khoking S, Ellis Dzh Krupnomasshtabnaya Struktura Prostranstva-vremeni (M.: Mir, 1977)
  21. Poisson E, Israel W Phys. Rev. D 41 1796 (1990)
  22. Ori A Phys. Rev. Lett. 68 2117 (1992)
  23. Tipler F J Phys. Lett. A 64 8 (1977)
  24. Burko L M Phys. Rev. Lett. 90 121101 (2003)
  25. Hansen J, Khokhlov A, Novikov I Phys. Rev. D 71 064013 (2005)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions