Physics of our days

Optical properties of graphene and IV — VI semiconductors

Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation

The frequency dispersion of the dynamic conductivity of graphene, of a multilayer graphene, and of IV — VI semiconductors is considered as a function of the temperature and carrier density in the range of frequencies that are higher than the carrier relaxation rate but are lower than the conduction band width. A narrow gap and the linearity of the electron spectrum, which are common features of these materials, are responsible for a singularity of the dielectric function (logarithmic in the real part and step-like in the imaginary part) at the threshold of direct interband transitions and, accordingly, for an anomalously large permittivity in IV — VI semiconductors. The calculated and measured dielectric functions are in a very good agreement. The graphene transmittance in the optical range is frequency-independent and its departure from unity yields the value of the fine structure constant. The difference in dimensionality, which is equal to three for semiconductors and to two for graphene, manifests itself in the different character of plasmons and of electromagnetic waves existing for high doping (or in conditions of the field effect) near the absorption threshold.

Fulltext is available at IOP
PACS: 71.20.Nr, 78.20.Bh, 78.20.Ci, 78.66.Tr (all)
DOI: 10.1070/PU2008v051n09ABEH006625
Citation: Falkovsky L A "Optical properties of graphene and IV — VI semiconductors" Phys. Usp. 51 887–897 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

ќригинал: ‘альковский Ћ ј «ќптические свойства графена и полупроводников типа A4B6» ”‘Ќ 178 923–934 (2008); DOI: 10.3367/UFNr.0178.200809b.0923

References (30) ↓ Cited by (174) Similar articles (1)

  1. Castro Neto A H et al. arXiv:0709.1163
  2. Ando T Phys. Rev. E (2008), in press
  3. Geim A K, Novoselov K S Nature Mater. 6 183 (2007)
  4. Avouris P, Chen Z, Perebeinos V Nature Nanotechnol. 2 605 (2007)
  5. Fal’kovskii L A, Brodovoi A V, Lashkarev G V Zh. Eksp. Teor. Fiz. 80 334 (1981); Falkovsky L A, Brodovoi A V, Lashkarev G V Sov. Phys. JETP 53 170 (1981)
  6. Volkov B A, Ruchaiskii O M Fiz. Tverd. Tela 40 57 (1998); Volkov B A, Ruchaiskii O M Phys. Solid State 40 50 (1998)
  7. Abrikosov A A Zh. Eksp. Teor. Fiz. 44 2039 (1963); Abrikosov A A Sov. Phys. JETP 17 1372 (1963)
  8. Beneslavskii S D, Fal’kovskii L A Zh. Eksp. Teor. Fiz. 69 1063 (1975); Beneslavsky S D, Falkovsky L A Sov. Phys. JETP 42 541 (1975); Brandt N B, Semenov M V, Falkovsky L A J. Low Temp. Phys. 27 75 (1977)
  9. Korn D M, Braunstein R Phys. Rev. B 5 4837 (1972)
  10. Suzuki N, Sawai K, Adachi S J. Appl. Phys. 77 1249 (1995)
  11. Vas’ko F T Fiz. Tekh. Poluprovodn. 9 1565 (1975)
  12. Volkov B A, Kushnir V P, Pankratov O A Fiz. Tverd. Tela 24 415 (1982); Volkov B A, Kushnir V P, Pankratov O A Sov. Phys. Solid State 24 235 (1982)
  13. Kohn S E et al. Phys. Rev. B 8 1477 (1973)
  14. Albanesi E A, Peltzer y Blanca E L, Petukhov A G Comput. Mater. Sci. 32 85 (2005)
  15. Dalen R In Solid State Physics: Advances In Research And Applications Vol. 26 (Eds F Seitz, D Turnbull, H Ehrenreich) (New York: Academic Press, 1973) p. 179
  16. Preier H Appl. Phys. 20 189 (1979)
  17. Bauer G In Narrow Gap Semiconductors, Physics And Applications (Lecture Notes In Physics, Vol. 133, Ed. W Zawadzki) (Berlin: Springer-Verlag, 1980)
  18. Fretigny C, Saito R, Kamimura H J. Phys. Soc. Jpn. 58 2098 (1989)
  19. Falkovsky L A, Varlamov A A Eur. Phys. J. B 56 281 (2007)
  20. Falkovsky L A, Pershoguba S S Phys. Rev. B 76 153410 (2007)
  21. Gusynin V P, Sharapov S G, Carbotte J P Phys. Rev. B 75 165407 (2007)
  22. Novoselov K S et al. Science 306 666 (2004); Novoselov K S et al. Nature 438 197 (2005)
  23. Zhang Y et al. Phys. Rev. Lett. 94 176803 (2005); Zhang Y et al. Nature 438 201 (2005)
  24. Mikhailov S A, Ziegler K Phys. Rev. Lett. 99 016803 (2007)
  25. Abergel D S L, Russell A, Fal’ko V I Appl. Phys. Lett. 91 063125 (2007); Abergel D S L, Russell A, Fal’ko V I arXiv:0705.0091
  26. Hwang E H, Das Sarma S Phys. Rev. B 75 205418 (2007)
  27. Nair R R et al. Science 320 1308 (2008)
  28. Suzuki N, Adachi S Jpn. J. Appl. Phys. 33 193 (1994)
  29. Cardona M, Greenaway D L Phys. Rev. 133 A1685 (1964)
  30. Moss T S Optical Properties Of Semiconductors (London: Butterworth, 1959) p. 189

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions