Reviews of topical problems

FeAs systems: a new class of high-temperature superconductors

Mikheev Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, S Kovalevskoi str. 18, Ekaterinburg, 620108, Russian Federation

This is the first systematic review of a new class of high-Tc superconductors that includes iron-based layered compounds such as REOFeAs (RE is a rare-earth element), AFe2As2 (A = Ba, Sr, Ca), and LiFeAs, all of which are antiferromagnetic normal metals while being stoichiometric and becoming superconducting (with the current maximum Tc given by 55 K) when doped with an element of a different valence. The common structural element of all these compounds is layers formed by FeAs4 complexes. Electron states near the Fermi level are formed by Fe 3d states. As was shown theoretically by LDA calculations and experimentally by ARPES, the electronic structure of all compounds of the FeAs class is similar; their Fermi surface is multi-sheeted, consisting of two hole pockets at the center and two electron pockets at the corners of the Brillouin zone. In this paper, the superconducting properties of such systems are reviewed in detail, including the dependence of Tc on the doping level, external pressure, superconducting critical field, and superconducting order parameter. The controversy over the order parameter symmetry determined from different measurements is discussed. The transport, magnetic, and superconducting properties of FeAs systems are analyzed in comparison with those of cuprates. Basic electronic models of FeAs compounds, with their electronic structure and the proximity of the state of doped compounds to the antiferromagnetic ordering taken into account, are described to explain the specific features of electron pairing in them. It is shown that unlike the cuprates, superconducting FeAs systems are weakly (or moderately) correlated materials that are far from the Mott — Hubbard transition. Aconclusion is made that the physical properties of FeAs compounds have mainly been well understood, except for the symmetry of the superconducting order parameter.

Fulltext is available at IOP
PACS: 74.20.−z, 74.25.−q, 74.62.−c, 74.70.−b (all)
DOI: 10.1070/PU2008v051n12ABEH006733
Citation: Izyumov Yu A, Kurmaev E Z "FeAs systems: a new class of high-temperature superconductors" Phys. Usp. 51 1261–1286 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Изюмов Ю А, Курмаев Э З «Новый класс высокотемпературных сверхпроводников в FeAs-cистемах» УФН 178 1307–1334 (2008); DOI: 10.3367/UFNr.0178.200812d.1307

References (165) Cited by (69) Similar articles (20) ↓

  1. A.L. Ivanovskii “New high-temperature superconductors based on rare-earth and transition metal oxyarsenides and related phases: synthesis, properties, and simulations51 1229–1260 (2008)
  2. M.V. Sadovskii “High-temperature superconductivity in iron-based layered compounds51 1201–1227 (2008)
  3. N.A. Zimbovskaya “Local geometry of the Fermi surface and its effect on the electronic characteristics of normal metals54 769–798 (2011)
  4. Yu.A. Izyumov, E.Z. Kurmaev “Physical properties and electronic structure of superconducting compounds with the β-tungsten structure17 356–380 (1974)
  5. Yu.A. Izyumov, E.Z. Kurmaev “Superfluidity of compounds based on transition elements, and its connection with lattice instability19 26–52 (1976)
  6. Yu.A. Izyumov, E.Z. Kurmaev “Materials with strong electron correlations51 23–56 (2008)
  7. M.V. Sadovskii “Pseudogap in high-temperature superconductors44 515–539 (2001)
  8. V.Z. Kresin, Yu.N. Ovchinnikov “‘Giant’ strengthening of superconducting pairing in metallic nanoclusters: large enhancement of Tc and potential for room-temperature superconductivity51 427–435 (2008)
  9. A.P. Levanyuk, R.A. Suris “Some properties of superconducting compounds of the V3Si type10 40–44 (1967)
  10. M.Yu. Kagan, V.A. Mitskan, M.M. Korovushkin “Anomalous superconductivity and superfluidity in repulsive fermion systems58 733–761 (2015)
  11. I.N. Askerzade “Study of layered superconductors in the theory of an electron — phonon coupling mechanism52 977–988 (2009)
  12. O.V. Misochko “Electronic Raman scattering in high-temperature superconductors46 373–392 (2003)
  13. Yu.A. Izyumov, Yu.N. Proshin, M.G. Khusainov “Competition between superconductivity and magnetism in ferromagnet/superconductor heterostructures45 109–148 (2002)
  14. M.Yu. Kagan, A.V. Turlapov “BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gases62 215–248 (2019)
  15. Yu.A. Izyumov “Magnetism and superconductivity in strongly correlated systems34 (11) 935–957 (1991)
  16. Yu.A. Izyumov, Yu.N. Skryabin “Double exchange model and the unique properties of the manganites44 109–134 (2001)
  17. V.L. Ginzburg “Superconductivity: the day before yesterday — yesterday — today — tomorrow43 573–583 (2000)
  18. Yu.A. Izyumov “Strongly correlated electrons: the t-J model40 445–476 (1997)
  19. E.G. Maksimov “High-temperature superconductivity: the current state43 965–990 (2000)
  20. Yu.A. Izyumov “Spin-fluctuation mechanism of high-Tc superconductivity and order-parameter symmetry42 215–243 (1999)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions