Issues

 / 

2007

 / 

November

  

Reviews of topical problems


Vortices in a gas-discharge plasma

,
Institute of Applied Problems of Physics, National Academy of Sciences of Armenia, Armenia

Processes of vortex generation in a weakly ionized gas are reviewed in circumstances where a high-speed flow propagates along the gas discharge and acoustic waves interact with a positive column. Results on the effect of longitudinal gas flow on the positive-column properties are presented. It is shown that in certain conditions the gas flow in the positive column gives rise to vortices that cause the plasma to mix radially, producing a uniformly excited gas at high pressures. Results concerning the interaction of acoustic waves with low-temperature plasma are reviewed, and the acoustic-stimulated formation of vortex motion leading to an uncontracted discharge at elevated pressures is discussed. Also examined are flashes of superluminescence in an argon discharge caused by an abrupt transition of a positive column containing acoustic vortices from the uncontracted state to the contracted one at heightened pressures; this transition is understood to occur because of the turbulent-to-laminar transition in the acoustic flow. Finally, a gas-discharge acoustically induced laser is described.

Fulltext pdf (1.6 MB)
Fulltext is also available at DOI: 10.1070/PU2007v050n11ABEH006400
PACS: 42.55.−f, 52.20.Hv, 52.75.−d, 52.80.−s (all)
DOI: 10.1070/PU2007v050n11ABEH006400
URL: https://ufn.ru/en/articles/2007/11/c/
000253900700003
2-s2.0-40449103016
2007PhyU...50.1147A
Citation: Aramyan A R, Galechyan G A "Vortices in a gas-discharge plasma" Phys. Usp. 50 1147–1169 (2007)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Àðàìÿí À Ð, Ãàëå÷ÿí Ã À «Âèõðè â ãàçîðàçðÿäíîé ïëàçìå» ÓÔÍ 177 1207–1230 (2007); DOI: 10.3367/UFNr.0177.200711c.1207

References (112) Cited by (17) ↓ Similar articles (20)

  1. McQueen R, Lim Ch C 31 (5) (2024)
  2. Fadeev S A, Shaidullin L R Lobachevskii J Math 45 1947 (2024)
  3. Fadeev S A, Saifutdinov A I, Kashapov N F J. Phys.: Conf. Ser. 2379 012021 (2022)
  4. Fadeev S A, Saifutdinov A I Plasma Phys. Rep. 43 1080 (2017)
  5. Engelhardt M, Kogelheide F et al Plasma Processes & Polymers 14 (7) (2017)
  6. Engelhardt M, Kartaschew K et al J. Phys. D: Appl. Phys. 50 015206 (2017)
  7. Fadeev S A, Saifutdinov A I, Kashapov N F J. Phys.: Conf. Ser. 669 012010 (2016)
  8. Zaripov R G, Kashapov N F et al J. Phys.: Conf. Ser. 669 012053 (2016)
  9. Saifutdinov A I, Fadeev S A et al Jetp Lett. 102 637 (2015)
  10. Fadeev S A, Kashapov N F, Larionov V M IOP Conf. Ser.: Mater. Sci. Eng. 69 012006 (2014)
  11. Kashapov N F, Saifutdinov A I, Fadeev S A J. Phys.: Conf. Ser. 567 012004 (2014)
  12. Fadeev S A, Kashapov N F J. Phys.: Conf. Ser. 479 012009 (2013)
  13. Aramyan A R, Aramyan G R et al Acoust. Phys. 57 432 (2011)
  14. Vardanyan A A, Galechyan G A et al Tech. Phys. 56 1524 (2011)
  15. Aramyan A R, Galechyan G A et al Laser Phys. 20 298 (2010)
  16. Aramyan A R, Galechyan G A Laser Phys. 19 1480 (2009)
  17. Aramyan A R, Galechyan G A, Harutyunyan G G Laser Phys. 18 835 (2008)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions