Issues

 / 

2007

 / 

October

  

Reviews of topical problems


Theory of the J-band: from the Frenkel exciton to charge transfer

,
Photochemistry Center, Russian Academy of Sciences, Novatorov str. 7a, Moscow, 117421, Russian Federation

This review concerns the current status of the theory of formation of the so-called J-band (Jelley, Scheibe, 1936), an abnormally narrow, high-intensity, red-shifted optical absorption band arising from the aggregation of polymethine dyes. Two opposite approaches to explaining the physical nature of the J-band are given special attention. In the first of these, the old one based on Frenkel’s statistical exciton model, the specific structure of the dye is considered irrelevant, and the J-band is explained by assuming that the quickly moving Frenkel exciton acts to average out the quasistatic disorder in electronic transition energies of molecules in the linear J-aggregate (Knapp, 1984). In the second approach, on the contrary, the specific structure of the dye (the existence of a quasilinear polymethine chain ) is supposed to be very important. This new approach is based on a new theory of charge transfer. The explanation of the J-band here is that an elementary charge transfer along the J-aggregate’s chromophore is dynamically pumped by the chaotic reorganization of nuclei in the nearby environment at a resonance between electronic and nuclear movements — when the motion of nuclei being reorganized is only weakly chaotic (Egorov, 2001).

Fulltext pdf (594 KB)
Fulltext is also available at DOI: 10.1070/PU2007v050n10ABEH006317
PACS: 05.10.Ln, 33.20.Kf, 34.70.+e, 71.35.−y, 78.40.Me, 82.20.−w (all)
DOI: 10.1070/PU2007v050n10ABEH006317
URL: https://ufn.ru/en/articles/2007/10/a/
000252808900001
2-s2.0-38949120086
2007PhyU...50..985E
Citation: Egorov V V, Alfimov M V "Theory of the J-band: from the Frenkel exciton to charge transfer" Phys. Usp. 50 985–1029 (2007)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Егоров В В, Алфимов М В «Теория J-полосы: от экситона Френкеля к переносу заряда» УФН 177 1033–1081 (2007); DOI: 10.3367/UFNr.0177.200710a.1033

References (325) Cited by (55) ↓ Similar articles (20)

  1. Jansen T L C, Günther L M et al 5 (4) (2024)
  2. Egorov V V The 1st International Online Conference on Mathematics and Applications, (2023) p. 55
  3. Egorov V V The 1st International Online Conference on Mathematics and Applications, (2023) p. 31
  4. Usoltsev S, Shagurin A, Marfin Yu IJMS 23 10955 (2022)
  5. Egorov V V Mathematics 10 1443 (2022)
  6. Dar N, Ankari R ChemistryOpen 11 (11) (2022)
  7. Egorov V V, Thomas S Nano-Structures & Nano-Objects 25 100650 (2021)
  8. Egorov V V Symmetry 12 1856 (2020)
  9. Egorov V V Challenges 11 16 (2020)
  10. Egorov V V Results In Physics 13 102252 (2019)
  11. Petrenko A, Stein M J. Phys. Chem. A 123 9321 (2019)
  12. Egorov V V Heliyon 5 e02579 (2019)
  13. Pergamenshchik V M, Multian V V et al Soft Matter 15 8886 (2019)
  14. Guerrini M, Calzolari A, Corni S ACS Omega 3 10481 (2018)
  15. Hestand N J, Spano F C Chem. Rev. 118 7069 (2018)
  16. Egorov V V R. Soc. Open Sci. 4 160550 (2017)
  17. Chebotarev A N, Snigur D V et al Russ J Gen Chem 87 196 (2017)
  18. Kaliteevskaya E N, Krutyakova V P et al Opt. Spectrosc. 120 482 (2016)
  19. Kondratenko T S, Ovchinnikov O V et al Nanotechnol Russia 11 85 (2016)
  20. Krasilnikov P M, Zlenko D V, Stadnichuk I N CRM 7 125 (2015)
  21. Stadnichuk I N, Krasilnikov P M et al Photosynth Res 124 315 (2015)
  22. Dastafkan K, Khajeh M et al Talanta 144 1377 (2015)
  23. Rubia-Payá C, Giner-Casares Ju J et al RSC Adv. 5 32227 (2015)
  24. Tovstun S A, Ivanchikhina A V et al High Energy Chem 49 111 (2015)
  25. Petrenko A, Stein M J. Phys. Chem. A 119 6773 (2015)
  26. Nekrasov A D, Shapiro B I, Kuzmin V A High Energy Chem 48 81 (2014)
  27. Krasilnikov P M BIOPHYSICS 59 52 (2014)
  28. Fedorenko E V, Mirochnik A G et al Dyes And Pigments 109 181 (2014)
  29. Avakyan V G, Shapiro B I, Alfimov M V Dyes And Pigments 109 21 (2014)
  30. Laban B, Vodnik V et al J. Phys. Chem. C 118 23393 (2014)
  31. Egorov V V 4 (7) (2014)
  32. Bulavko G V, Ishchenko A A Russ. Chem. Rev. 83 575 (2014)
  33. Rajapaksha S P, He Yu, Lu H P Phys. Chem. Chem. Phys. 15 5636 (2013)
  34. Suponitsky K Yu, Masunov A E 139 (9) (2013)
  35. Dubinina T V, Tomilova L G, Zefirov N S Russ. Chem. Rev. 82 865 (2013)
  36. Egorov V V Chaos and Complex Systems Chapter 6 (2013) p. 41
  37. Egorov V V RSC Adv. 3 4598 (2013)
  38. Palewska K, Sworakowski Ju, Lipiński J Optical Materials 34 1717 (2012)
  39. Carbonaro C M, Ricci P C et al RSC Adv. 2 1905 (2012)
  40. Würthner F, Kaiser T E, Saha‐Möller Chantu R Angewandte Chemie 123 3436 (2011)
  41. Somaschi N, Mouchliadis L et al 99 (14) (2011)
  42. Selektor S L, Raitman O A et al Prot Met Phys Chem Surf 47 484 (2011)
  43. Egorov V V Journal Of Luminescence 131 543 (2011)
  44. Carbonaro C M Journal Of Photochemistry And Photobiology A: Chemistry 222 56 (2011)
  45. Adadurov A F, Bedrik A I et al J Fluoresc 21 1521 (2011)
  46. Würthner F, Kaiser T E, Saha‐Möller Chantu R Angew Chem Int Ed 50 3376 (2011)
  47. Czímerová A, Jankovič L’uboš, Bujdák Ju Journal Of Colloid And Interface Science 357 322 (2011)
  48. Kato Sh, Kawabe Yu Molecular Crystals And Liquid Crystals 520 165/[441] (2010)
  49. Egorov V V Physics Procedia 2 223 (2009)
  50. Kalimuthu P, John S A Langmuir 25 12414 (2009)
  51. Kaiser T E, Stepanenko V, Würthner F J. Am. Chem. Soc. 131 6719 (2009)
  52. Ishchenko A A, Grabchuk G P Theor Exp Chem 45 143 (2009)
  53. Kaiser T E, Scheblykin I G et al J. Phys. Chem. B 113 15836 (2009)
  54. Roden J, Eisfeld A, Briggs J S Chemical Physics 352 258 (2008)
  55. Shelkovnikov V V, Plekhanov A I, Orlova N A Nanotechnol Russia 3 521 (2008)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions