Issues

 / 

2006

 / 

April

  



Properties of backward electromagnetic waves and negative reflection in ferrite films

 a,  b
a Institute of Radio Engineering and Electronics, Russian Academy of Sciences, pl. Vvedenskogo 1, Fryazino, Moscow Region, 141120, Russian Federation
b Fryazino Branch of the V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, pl. Vvedenskogo 1, Fryazino, Moscow Region, 141190, Russian Federation

For a backward electromagnetic wave (magnetostatic wave) in a ferrite film, reflection from a perfect mirror formed by the straight edge of the film is investigated experimentally and theoretically. It is found that when the incident wave is collinear (the group velocity vector and the wave vector have opposite directions), negative reflection occurs at any angle of incidence, i.e., the incident and reflected beams are on the same side of the normal to the boundary. It is discovered that a noncollinear backward wave is nonreciprocal in the sense that its energy can be localized both near the surface and in the middle of the film. This property, previously observed only for surface magnetostatic waves, provides both the efficiency of generating and receiving the wave and the possibility of observing the reflected beam. A situation is realized where wave reflection results in two reflected beams. The properties of backward electromagnetic waves propagating in ferrite films are briefly analyzed.

Fulltext pdf (254 KB)
Fulltext is also available at DOI: 10.1070/PU2006v049n04ABEH005807
PACS: 42.25.−p, 78.20.Ci, 78.66.Bz (all)
DOI: 10.1070/PU2006v049n04ABEH005807
URL: https://ufn.ru/en/articles/2006/4/d/
000239727900004
2-s2.0-33747190301
2006PhyU...49..389V
Citation: Vashkovsky A V, Lock E H "Properties of backward electromagnetic waves and negative reflection in ferrite films" Phys. Usp. 49 389–399 (2006)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Вашковский А В, Локк Э Г «Свойства обратных электромагнитных волн и возникновение отрицательного отражения в ферритовых пленках» УФН 176 403–414 (2006); DOI: 10.3367/UFNr.0176.200604d.0403

References (17) Cited by (53) ↓

  1. Martyshkin A A, Sheshukova S E et al Phys. Rev. Applied 22 (1) (2024)
  2. Martyshkin A A, Sadovnikov A V Journal Of Magnetism And Magnetic Materials 595 171644 (2024)
  3. Kumar J S, Yadav Sh et al Journal Of Magnetism And Magnetic Materials 596 171972 (2024)
  4. Lock E H, Gerus S V Izvestiâ Akademii Nauk SSSR. Seriâ Fizičeskaâ 87 1494 (2023)
  5. Lock E H, Gerus S V Bull. Russ. Acad. Sci. Phys. 87 1528 (2023)
  6. Nikhil K C S Magnonic Devices SpringerBriefs In Materials Chapter 1 (2023) p. 1
  7. Gerus S V, Annenkov A Yu, Lokk E H Bull. Russ. Acad. Sci. Phys. 86 1019 (2022)
  8. Gerus S V, Annenkov A Yu, Lock E H Journal Of Magnetism And Magnetic Materials 563 169747 (2022)
  9. Gerus S V, Lock E H et al Bull. Russ. Acad. Sci. Phys. 86 1361 (2022)
  10. Martyshkin A A, Davies C S, Sadovnikov A V Phys. Rev. Applied 18 (6) (2022)
  11. Kruglyak V V Appl. Phys. Lett. 119 200502 (2021)
  12. Chen Zh, Ma F 130 (9) (2021)
  13. Gerus S V, Lock E H, Annenkov A Yu J. Commun. Technol. Electron. 66 1378 (2021)
  14. Vogel M, Pirro P et al 116 (26) (2020)
  15. Lock E H Bull. Russ. Acad. Sci. Phys. 84 134 (2020)
  16. Lock E H J. Commun. Technol. Electron. 65 265 (2020)
  17. Davidovich M V Phys.-Usp. 62 1173 (2019)
  18. Krivoruchko V N, Savchenko A S Acta Phys. Pol. A 133 463 (2018)
  19. Ali R, Zamir B, Shah H A Results In Physics 8 243 (2018)
  20. Lokk E G J. Commun. Technol. Electron. 63 915 (2018)
  21. Madami M, Khivintsev Y et al 113 (15) (2018)
  22. Lock E H Bull. Russ. Acad. Sci. Phys. 82 932 (2018)
  23. Vogel M, Aßmann R et al Sci Rep 8 (1) (2018)
  24. Sadovnikov A V, Grachev A A et al Jetp Lett. 108 312 (2018)
  25. Krivoruchko V N, Savchenko A S, Kruglyak V V Phys. Rev. B 98 (2) (2018)
  26. Perov D V, Rinkevich A B et al Mater. Res. Express 5 076301 (2018)
  27. Lock E H Bull. Russ. Acad. Sci. Phys. 81 996 (2017)
  28. Krivoruchko V N, Savchenko A S 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP), (2017) p. 02MFPM06-1
  29. Sadovnikov A V, Davies C S et al Phys. Rev. B 96 (6) (2017)
  30. Pazynin L Springer Series On Atomic, Optical, And Plasma Physics Vol. Electromagnetic Waves in Complex SystemsNew Analytical Solutions of Selected Electromagnetic Problems in Wave Diffraction Theory91 Chapter 1 (2016) p. 1
  31. Davies C S, Kruglyak V V 41 760 (2015)
  32. Davies C S, Francis A et al Phys. Rev. B 92 (2) (2015)
  33. Davies C S, Sadovnikov A V et al 107 (16) (2015)
  34. Yuan Q-Zh Phys. Rev. A 92 (1) (2015)
  35. Lokk E G J. Commun. Technol. Electron. 60 97 (2015)
  36. Lokk E G J. Commun. Technol. Electron. 59 767 (2014)
  37. Abramov A S, Afanas’ev S A, Sementsov D I Tech. Phys. 59 1506 (2014)
  38. Mankov Yu I Phys. Solid State 55 924 (2013)
  39. RANA BIVAS, BARMAN ANJAN SPIN 03 1330001 (2013)
  40. Lock E H Uspekhi Fizicheskikh Nauk 182 1327 (2012)
  41. Timoshenko P E, Ivanov V N et al J. Commun. Technol. Electron. 57 726 (2012)
  42. Timoshenko P E, Ivanov V N et al J. Commun. Technol. Electron. 57 480 (2012)
  43. Vashkovsky A V, Lock E H Uspekhi Fizicheskikh Nauk 181 293 (2011)
  44. Kozlov A V, Mozhaev V G, Zyryanova A V J. Phys.: Condens. Matter 22 075401 (2010)
  45. Kruglyak V V, Demokritov S O, Grundler D J. Phys. D: Appl. Phys. 43 264001 (2010)
  46. Ignatov Yu A, Klimov A A, Nikitov S A J. Commun. Technol. Electron. 55 449 (2010)
  47. Timoshenko P E, Babicheva E R et al Radiophys Quantum El 52 892 (2009)
  48. Zubkov V I, Shcheglov V I Tech. Phys. Lett. 34 971 (2008)
  49. Lock E H Uspekhi Fizicheskikh Nauk 178 397 (2008)
  50. Kostylev M P, Serga A A et al Phys. Rev. B 76 (18) (2007)
  51. Lokk E G J. Commun. Technol. Electron. 52 189 (2007)
  52. Vashkovskii A V, Lokk E G Bull. Russ. Acad. Sci. Phys. 71 1604 (2007)
  53. Vashkovskii A V, Lokk E H Uspekhi Fizicheskikh Nauk 176 557 (2006)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions