Issues

 / 

2005

 / 

September

  



Diagrammatic Monte Carlo method as applied to the polaron problems


Cross-Correlated Materials Research Group (CMRG), ASI, RIKEN, Wako, Saitama , Japan

Numerical methods whereby exact solutions to the problem of a few particles interacting with one another and with several bosonic excitation branches are presented. The diagrammatic Monte Carlo method allows the exact calculation of the Matsubara Green function, and the stochastic optimization technique provides an approximation-free analytic continuation. In this review, results unobtainable by conventional methods are discussed, including the properties of excited states in the self-trapping phenomenon, the optical spectra of polarons in all coupling regimes, the validity range analysis of the Frenkel and Wannier approximations relevant to the exciton, and the peculiarities of photoemission spectra of a lattice- coupled hole in a Mott insulator.

Fulltext pdf (312 KB)
Fulltext is also available at DOI: 10.1070/PU2005v048n09ABEH002632
PACS: 02.70.Uu, 71.35.−y, 71.38.−k, 74.72.−h (all)
DOI: 10.1070/PU2005v048n09ABEH002632
URL: https://ufn.ru/en/articles/2005/9/b/
000234905700002
2005PhyU...48..887M
Citation: Mishchenko A S "Diagrammatic Monte Carlo method as applied to the polaron problems" Phys. Usp. 48 887–902 (2005)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Мищенко А С «Диаграммный метод Монте-Карло в применении к проблемам поляронов» УФН 175 925–942 (2005); DOI: 10.3367/UFNr.0175.200509b.0925

References (109) Cited by (27) ↓

  1. Janković V 159 (9) (2023)
  2. Kabanov V V J. Phys. Commun. 6 115002 (2022)
  3. Tkach M V, Seti Ju O, Voitsekhivska O M Condens. Matter Phys. 24 13705 (2021)
  4. Lakhno V D Mathematical foundations of the translation-invariant bipolaron theory of superconductivity (2021)
  5. Franchini C, Reticcioli M et al Nat Rev Mater 6 560 (2021)
  6. Mishchenko A S Organic Semiconductors for Optoelectronics 1 (2021) p. 201
  7. Shneyder E I, Nikolaev S V et al Phys. Rev. B 101 (23) (2020)
  8. Tkach M, Seti Ju i dr Appl Nanosci 10 2581 (2020)
  9. Tkach M, Seti Ju et al J Low Temp Phys 195 26 (2019)
  10. Kolesnikov S V, Saletsky A M et al Math Models Comput Simul 10 564 (2018)
  11. Tkach M, Pytiuk O et al 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP), (2018) p. 1
  12. Hahn T, Klimin S et al Phys. Rev. B 97 (13) (2018)
  13. Tkach M, Pytiuk O et al 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP), (2017) p. 03NE03-1
  14. Kashurnikov V A, Krasavin A V, Zhumagulov Ya V Jetp Lett. 103 334 (2016)
  15. Kashurnikov V A, Krasavin A V, Zhumagulov Ya V J. Phys.: Conf. Ser. 747 012035 (2016)
  16. Lakhno V D Uspekhi Fizicheskikh Nauk 185 317 (2015) [Lakhno V D Phys.-Usp. 58 295 (2015)]
  17. Mishchenko A S, Matsui H, Hasegawa T Phys. Rev. B 85 (8) (2012)
  18. Mishchenko A S, Nagaosa N et al EPL 95 57007 (2011)
  19. Mishchenko A S Advances In Condensed Matter Physics 2010 1 (2010)
  20. Berciu M, Mishchenko A S, Nagaosa N Europhys. Lett. 89 37007 (2010)
  21. De Filippis G, Cataudella V et al Phys. Rev. B 80 (19) (2009)
  22. Mishchenko A S, Nagaosa N et al Phys. Rev. B 79 (18) (2009)
  23. Mishchenko A S Uspekhi Fizicheskikh Nauk 179 1259 (2009)
  24. Mishchenko A S Lecture Notes In Physics Vol. Computational Many-Particle PhysicsDiagrammatic Monte Carlo and Stochastic Optimization Methods for Complex Composite Objects in Macroscopic Baths739 Chapter 12 (2008) p. 367
  25. Kashurnikov V A, Krasavin A V J. Exp. Theor. Phys. 105 69 (2007)
  26. Mishchenko A S, Nagaosa N Phys. Rev. B 73 (9) (2006)
  27. S M A, Nagaosa N J. Phys. Soc. Jpn. 75 011003 (2006)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions