The differential rotation of stars

Institut solnechno-zemnoi fiziki, Rossiiskaya akademiya nauk, Sibirskoe otdelenie, Irkutsk, Russian Federation

Astronomical observations of recent years have substantially extended our knowledge of the rotation of stars. Helioseismology has found out that the equator-to-pole decline in the angular velocity observed on the solar surface traces down to the deep interior of the Sun. New information has been gained regarding the dependence of the rotational nonuniformities on the angular velocity and mass of the star. These achievements have prompted the development of the theory of differential rotation, which is the focal point of this review. Nonuniform rotation results from the interaction of turbulent convection with rotation. The investigation into the turbulent mechanisms of angular-momentum transport has reached a level at which the obtained results can serve as the basis for developing quantitative models of stellar rotation. Such models contain virtually no free parameters but closely reproduce the helioseismological data on the internal rotation of the Sun. The theoretical predictions on the differential rotation of the stars agree with observations. A brief discussion is held here on the relation between the magnetic activity of stars and the nonuniformity of their rotation and on prospects for further development of the theory.

Fulltext is available at IOP
PACS: 47.27.−i, 47.32.−y, 97.10.−q (all)
DOI: 10.1070/PU2005v048n05ABEH002099
Citation: Kichatinov L L "The differential rotation of stars" Phys. Usp. 48 449–467 (2005)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кичатинов Л Л «Дифференциальное вращение звезд» УФН 175 475–494 (2005); DOI: 10.3367/UFNr.0175.200505b.0475

References (122) Cited by (25) ↓

  1. Chernov S V Astron. Rep. 65 657 (2021)
  2. Getling A V, Kosovichev A G, Zhao Ju ApJL 908 L50 (2021)
  3. Ershkov S, Leshchenko D, Abouelmagd E I Eur. Phys. J. Plus 136 (4) (2021)
  4. ERSHKOV SERGEY, LESHCHENKO DMYTRO An. Acad. Bras. Ciênc. 93 (suppl 3) (2021)
  5. Lanzafame A C, Spada F, Distefano E A&A 597 A63 (2017)
  6. Makarov V V, Goldin A ApJ 845 149 (2017)
  7. Kontorovich V M Astron. Rep. 60 322 (2016)
  8. Kitchatinov L L Astron. Lett. 42 339 (2016)
  9. Sokolov D D, Stepanov R A, Frick P G Uspekhi Fizicheskikh Nauk 184 313 (2014) [Sokoloff D D, Stepanov R A, Frick P G Phys.-Usp. 57 292 (2014)]
  10. Reinhold T, Reiners A, Basri G A&A 560 A4 (2013)
  11. Reinhold T, Reiners A A&A 557 A11 (2013)
  12. Efimenko V M Bull.Crim. Astrophys. Observ. 108 17 (2012)
  13. Loginov A A, Sal’nikov N N et al Kinemat. Phys. Celest. Bodies 27 217 (2011)
  14. Hartman J D, Bakos G Á et al 408 475 (2010)
  15. Badalyan O G New Astronomy 15 135 (2010)
  16. Pure And Applied Physics Vol. Physics of the SunOscillations in the Sun20096181 (2009) p. 189
  17. Zyelyk Ya I, Stepanian N N, Andreyeva O A Kosm. Nauka Tehnol. 15 44 (2009)
  18. Hartman J D, Gaudi B S et al ApJ 691 342 (2009)
  19. Erdem A, Budding E et al New Astronomy 14 545 (2009)
  20. Erdem A, Budding E et al New Astronomy 14 109 (2009)
  21. Makarov V V, Beichman C A et al ApJ 707 L73 (2009)
  22. Walker G A H, Croll B et al ApJ 659 1611 (2007)
  23. Loginov A A, Tkachenko V A, Cheremnykh O K Kosm. Nauka Tehnol. 13 93 (2007)
  24. Kitchatinov L L Astron. Rep. 50 944 (2006)
  25. Kitchatinov L L Astron. Rep. 50 512 (2006)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions