Issues

 / 

2005

 / 

April

  

Reviews of topical problems


Phase transitions and adjacent phenomena in simple atomic systems

 a,  b
a Department of Chemistry, University of Chicago, 5735 South Ellis Ave., Chicago, Illinois, 60637, USA
b Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation

Clusters and bulk systems of bound atoms with pair-wise interactions have two types of excitations: configurational, due to a change in the atomic arrangement in space, and thermal, associated with atomic vibrations. The configurational excitation is responsible for phase transitions in such systems and can be considered as a transition from the global minimum of the atomic potential energy surface in a multidimensional space of atomic coordinates to some other, higher-energy local minima. From this standpoint, various aspects of aggregate states of atomic clusters are considered, including coexistence of the liquid and solid cluster phases, the freezing point as the temperature of transition from the metastable liquid state to the unstable state, the glassy states as unstable configurationally excited states with long lifetimes, and the phase transition under high pressures when the crystal lattice for the distribution of atoms is no longer the most stable form for the solid state. The concept of voids as elementary internal configurational excitations of a macroscopic atomic system, which are connected with local minima of the potential energy surface, allows us to consider the glassy-solid transition and processes of the growth of nuclei of a new phase as a result of void transport. The degrees of deviation from traditional macroscopic thermodynamics for clusters and bulk systems near a phase transition is analyzed. It is shown that the thermal motion of atoms makes a significant contribution to the entropy jump at the phase transition, which allows us to use the Lindemann criterion for the phase transition and other criteria which use parameters of thermal motion of atoms, even though the inherent nature of the phase transition is determined by configurational excitation.

Fulltext pdf (558 KB)
Fulltext is also available at DOI: 10.1070/PU2005v048n04ABEH002022
PACS: 36.40.Ei, 61.72.Ji, 64.70.Dv, 64.70.Pf (all)
DOI: 10.1070/PU2005v048n04ABEH002022
URL: https://ufn.ru/en/articles/2005/4/b/
000231253100002
2005PhyU...48..345B
Citation: Berry R S, Smirnov B M "Phase transitions and adjacent phenomena in simple atomic systems" Phys. Usp. 48 345–388 (2005)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Берри Р С, Смирнов Б М «Фазовые переходы и сопутствующие явления в простых системах связанных атомов» УФН 175 367–411 (2005); DOI: 10.3367/UFNr.0175.200504b.0367

References (207) Cited by (48) ↓ Similar articles (20)

  1. Zarvin A E, Madirbaev V Zh et al Fluid Dyn 58 1668 (2023)
  2. de With G Chem. Rev. 123 13713 (2023)
  3. Bedarev I A, Lavruk S A J Eng Phys Thermophy 95 1672 (2022)
  4. Zarvin A E, Madirbaev V Zh et al Plasma Chem Plasma Process 42 247 (2022)
  5. Grunina N A, Belopolskaya T V et al BIOPHYSICS 65 28 (2020)
  6. Semyonov V I, Yu Ch A IOP Conf. Ser.: Mater. Sci. Eng. 643 012129 (2019)
  7. Yang X, Tong H et al Phys. Rev. E 99 (6) (2019)
  8. Melnikov G A Phys. Solid State 60 1000 (2018)
  9. Melnikov G, Yemelianov S et al IOP Conf. Ser.: Mater. Sci. Eng. 168 012021 (2017)
  10. Pavan L, Rossi K, Baletto F 143 (18) (2015)
  11. Gufan M A, Gufan Yu M et al Bull. Russ. Acad. Sci. Phys. 79 1409 (2015)
  12. Belashchenko D K Russ. J. Phys. Chem. 89 516 (2015)
  13. Berry R S, Smirnov B M Phys. Chem. Chem. Phys. 16 9747 (2014)
  14. Pan’kin N A J. Exp. Theor. Phys. 118 856 (2014)
  15. Berry R S, Smirnov B M Theor Chem Acc 133 (10) (2014)
  16. Berry R S, Smirnov B M Physics Reports 527 205 (2013)
  17. Berry R S, Smirnov B M Computational And Theoretical Chemistry 1021 2 (2013)
  18. Berry R S, Smirnov B M Uspekhi Fizicheskikh Nauk 183 1029 (2013) [Berry R S, Smirnov B M Phys.-Usp. 56 973 (2013)]
  19. Gnatchenko E V, Nechay A N et al 38 1139 (2012)
  20. Makarov G N Uspekhi Fizicheskikh Nauk 181 365 (2011)
  21. Kashtanov P V, Smirnov B M High Temp 48 846 (2010)
  22. Niss K, Dalle-Ferrier C et al Phys. Rev. E 82 (2) (2010)
  23. Berry R S, Smirnov B M Entropy 12 1303 (2010)
  24. Makarov G N Uspekhi Fizicheskikh Nauk 180 185 (2010)
  25. Chobal’ A I, Rizak I M et al Phys. Solid State 52 1468 (2010)
  26. Saitoh K, Hayakawa H Progress Of Theoretical Physics 122 1081 (2009)
  27. Berry R S, Smirnov B M Uspekhi Fizicheskikh Nauk 179 147 (2009) [Berry R S, Smirnov B M Phys.-Usp. 52 137 (2009)]
  28. Berry R S, Smirnov B M 130 (6) (2009)
  29. Vakula V L, Danylchenko O G et al 35 944 (2009)
  30. Tytik D L Prot Met Phys Chem Surf 45 187 (2009)
  31. Berry R S, Smirnov B M International Journal Of Mass Spectrometry 280 204 (2009)
  32. Gafner S L, Redel L V, Gafner Yu Ya J. Exp. Theor. Phys. 108 784 (2009)
  33. Makarov G N Uspekhi Fizicheskikh Nauk 178 337 (2008)
  34. Tver’yanovich Yu S, Bal’makov M D et al Glass Phys Chem 34 (2) (2008)
  35. Aquilanti V, Lombardi A, Sevryuk M B Russ. J. Phys. Chem. B 2 947 (2008)
  36. Bal’makov M D Glass Phys Chem 34 110 (2008)
  37. Danil’chenko A G, Kovalenko S I, Samovarov V N 34 966 (2008)
  38. Danil’chenko A G, Kovalenko S I, Samovarov V N 34 1030 (2008)
  39. Gordon E B, Smirnov B M J. Exp. Theor. Phys. 107 (2) (2008)
  40. Bal’makov M D Glass Phys Chem 34 559 (2008)
  41. Vikarchuk A A, Yasnikov I S Phys. Solid State 49 1 (2007)
  42. Liu J, Miller W H 127 (11) (2007)
  43. Smirnov B M Uspekhi Fizicheskikh Nauk 177 369 (2007)
  44. Michaelian K, Santamaría-Holek I Europhys. Lett. 79 43001 (2007)
  45. Cox G, Berry R S, Johnston R L J. Phys. Chem. A 110 11543 (2006)
  46. Gusein-zade N G, Ignatov A M Plasma Phys. Rep. 32 836 (2006)
  47. Danylchenko O G, Doronin Yu S et al Jetp Lett. 84 324 (2006)
  48. Dyre Je C Rev. Mod. Phys. 78 953 (2006)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions