Issues

 / 

2005

 / 

February

  

Reviews of topical problems


Statistical properties of dynamical chaos

, , ,
International Research Institute of Nonlinear Dynamics, Department of Physics, N.G. Chernyshevskii; Saratov State University, ul. Astrakhanskaya 83, Saratov, 410012, Russian Federation

Statistical descriptions of dynamical chaos and investigations of noise effects on chaotic oscillation regimes are reviewed. Nearly hyperbolic and nonhyperbolic chaotic attractors are studied. An illustration of the technique of diagnosing the attractor type in numerical simulations is given. Regularities in relaxation to the invariant probability distribution are analyzed for various types of attractors. Spectral-correlative properties of chaotic oscillations are investigated. Decay laws for the autocorrelation functions and the shapes of the power spectra are found, along with their relationship to the Lyapunov exponents, diffusion of the instantaneous phase, and the intensity of external noise. The mechanism of the onset of chaos and its relationship to the characteristics of the spiral attractors are demonstrated for inhomogeneous media that can be modeled by the Ginzburg-Landau equation. Numerical data are compared with experimental results.

Fulltext is available at IOP
PACS: 02.50.−r, 05.45.−a, 47.52.+j (all)
DOI: 10.1070/PU2005v048n02ABEH002070
URL: https://ufn.ru/en/articles/2005/2/c/
Citation: Anishchenko V S, Vadivasova T E, Okrokvertskhov G A, Strelkova G I "Statistical properties of dynamical chaos" Phys. Usp. 48 151–166 (2005)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Анищенко В С, Вадивасова Т Е, Окрокверцхов Г А, Стрелкова Г И «Статистические свойства динамического хаоса» УФН 175 163–179 (2005); DOI: 10.3367/UFNr.0175.200502c.0163

References (92) Cited by (32) Similar articles (20) ↓

  1. K.V. Koshel, S.V. Prants “Chaotic advection in the ocean49 1151–1178 (2006)
  2. A. Loskutov “Fascination of chaos53 1257–1280 (2010)
  3. S.P. Kuznetsov “Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics54 119–144 (2011)
  4. O.G. Onishchenko, O.A. Pokhotelov et alStructure and dynamics of concentrated mesoscale vortices in planetary atmospheres63 683–697 (2020)
  5. B.M. Smirnov “Electrical cycle in the Earth’s atmosphere57 1041–1062 (2014)
  6. A.N. Vulfson, O.O. Borodin “The system of convective thermals as a generalized ensemble of Brownian particles59 109–120 (2016)
  7. V.S. Anishchenko, A.B. Neiman et alStochastic resonance: noise-enhanced order42 7–36 (1999)
  8. G.I. Strelkova, V.S. Anishchenko “Spatio-temporal structures in ensembles of coupled chaotic systems63 (2) (2020)
  9. O.G. Onishchenko, O.A. Pokhotelov, N.M. Astaf’eva “Generation of large-scale eddies and zonal winds in planetary atmospheres51 577–589 (2008)
  10. F.V. Dolzhanskii, V.A. Krymov, D.Yu. Manin “Stability and vortex structures of quasi-two-dimensional shear flows33 (7) 495–520 (1990)
  11. A.L. Virovlyansky, D.V. Makarov, S.V. Prants “Ray and wave chaos in underwater acoustic waveguides55 18–46 (2012)
  12. M.I. Rabinovich, M.M. Sushchik “The regular and chaotic dynamics of structures in fluid flows33 (1) 1–35 (1990)
  13. A.A. Koronovskii, O.I. Moskalenko, A.E. Hramov “On the use of chaotic synchronization for secure communication52 1213–1238 (2009)
  14. V.S. Anishchenko, S.V. Astakhov “Poincaré recurrence theory and its applications to nonlinear physics56 955–972 (2013)
  15. L.Kh. Ingel, M.V. Kalashnik “Nontrivial features in the hydrodynamics of seawater and other stratified solutions55 356–381 (2012)
  16. V.I. Klyatskin “Clustering and diffusion of particles and passive tracer density in random hydrodynamic flows46 667–688 (2003)
  17. V.P. Budaev, S.P. Savin, L.M. Zelenyi “Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport features54 875–918 (2011)
  18. M.I. Tribel’skii “Short-wavelength instability and transition to chaos in distributed systems with additional symmetry40 159–180 (1997)
  19. G.M. Zaslavskii, R.Z. Sagdeev et alMinimal chaos, stochastic webs, and structures of quasicrystal symmetry31 887–915 (1988)
  20. O.G. Bakunin “Stochastic instability and turbulent transport. Characteristic scales, increments, diffusion coefficients58 252–285 (2015)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions