Issues

 / 

2004

 / 

January

  

Reviews of topical problems


Lattice SU(2) theory projected on scalar particles


Russian Federation State Scientific Center ‘A.I. Alikhanov Institute of Theoretical and Experimental Physics’, ul. Bolshaya Cheremushkinskaya 25, Moscow, 117259, Russian Federation

Lattice measurements provide a unique possibility to directly study the anatomy of vacuum fluctuations, that is, their action and entropy. In this review, we discuss properties of vacuum fluctuations that are naturally called magnetic monopoles, or scalar particles. Magnetic monopoles are defined on the lattice as closed trajectories. One of the basic observations is that the length of these trajectories is measured in physical units (fermi) and does not depend on the lattice spacing a. Their thickness, on the other hand, determined in terms of the distribution of the non-Abelian action, is of order of the resolution a. Moreover, these infinitely thin — within presently available resolution — trajectories are unified into infinitely thin surfaces.

Fulltext pdf (195 KB)
Fulltext is also available at DOI: 10.1070/PU2004v047n01ABEH001606
PACS: 11.15.Ha, 11.15.Tk, 12.38.Aw (all)
DOI: 10.1070/PU2004v047n01ABEH001606
URL: https://ufn.ru/en/articles/2004/1/c/
000221476600003
2004PhyU...47...37Z
Citation: Zakharov V I "Lattice SU(2) theory projected on scalar particles" Phys. Usp. 47 37–44 (2004)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Çàõàðîâ Â È «Ðåøåòî÷íàÿ SU(2)-òåîðèÿ â ïðîåêöèè íà ñêàëÿðíûå ÷àñòèöû» ÓÔÍ 174 39–47 (2004); DOI: 10.3367/UFNr.0174.200401c.0039

References (14) Cited by (5) Similar articles (20) ↓

  1. V.G. Bornyakov, M.I. Polikarpov et alColor confinement and hadron structure in lattice chromodynamicsPhys. Usp. 47 17–35 (2004)
  2. Yu.M. Makeenko “The Monte Carlo method in lattice gauge theoriesSov. Phys. Usp. 27 401–430 (1984)
  3. M.I. Polikarpov “Fractals, topological defects, and confinement in lattice gauge theoriesPhys. Usp. 38 591–607 (1995)
  4. D.S. Kuz’menko, Yu.A. Simonov, V.I. Shevchenko “Vacuum, confinement, and QCD strings in the vacuum correlator methodPhys. Usp. 47 1–15 (2004)
  5. Yu.S. Kalashnikova, A.V. Nefed’ev, J.E.F.T. Ribeiro “Chiral symmetry and the properties of hadrons in the Generalized Nambu—Jona-Lasinio modelPhys. Usp. 60 667–693 (2017)
  6. M.A. Andreichikov, B.O. Kerbikov, Yu.A. Simonov “Hadron physics in magnetic fieldsPhys. Usp. 62 319–339 (2019)
  7. A.A. Migdal “Stochastic quantization of field theorySov. Phys. Usp. 29 389–411 (1986)
  8. I.V. Andreev “Chromodynamics as a theory of the strong interactionSov. Phys. Usp. 29 971–979 (1986)
  9. S.N. Vergeles, N.N. Nikolaev et alGeneral relativity effects in precision spin experimental tests of fundamental symmetriesPhys. Usp. 66 109–147 (2023)
  10. V.A. Novikov “Nonperturbative QCD and supersymmetric QCDPhys. Usp. 47 109–116 (2004)
  11. V.V. Kiselev, A.K. Likhoded “Baryons with two heavy quarksPhys. Usp. 45 455–506 (2002)
  12. Yu.S. Kalashnikova, A.V. Nefed’ev “Two-dimensional QCD in the Coulomb gaugePhys. Usp. 45 347–368 (2002)
  13. Yu.A. Simonov “The confinementPhys. Usp. 39 313–336 (1996)
  14. I.Yu. Kobzarev, B.V. Martem’yanov, M.G. Shchepkin “Orbitally excited hadronsSov. Phys. Usp. 35 (4) 257–275 (1992)
  15. M.A. Shifman “Anomalies and low-energy theorems of quantum chromodynamicsSov. Phys. Usp. 32 289–309 (1989)
  16. M.B. Voloshin, Yu.M. Zaitsev “Physics of Υ resonances: ten years laterSov. Phys. Usp. 30 553–574 (1987)
  17. A.I. Vainshtein, V.I. Zakharov et alABC of instantonsSov. Phys. Usp. 25 195–215 (1982)
  18. A.I. Vainshtein, V.I. Zakharov, M.A. Shifman “Higgs particlesSov. Phys. Usp. 23 429–449 (1980)
  19. A.I. Vainshtein, M.B. Voloshin et alCharmonium and quantum chromodynamicsSov. Phys. Usp. 20 796–818 (1977)
  20. V.I. Zakharov, B.L. Ioffe, L.B. Okun “New elementary particlesSov. Phys. Usp. 18 757–803 (1975)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions