Issues

 / 

2003

 / 

July

  

Methodological notes


Correlation and percolation properties of turbulent diffusion


Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, pl. Kurchatova 46, Moscow, 123182, Russian Federation

Ideas on characteristic behavior of correlation functions underlie all models of turbulent diffusion. This paper sets forth a consistent analysis of these correlation ideas, beginning with Taylor’s work of 1921, which pioneered the use of the autocorrelation function, and ending with works on the percolation theory of turbulent diffusion. Despite the fact that specific physical problems are significantly different, the commonality of the theoretical notions involved is emphasized. It is shown how the ideas of ’long-range’ correlations and fractality enter into the percolation method. The ’universality’ of the percolation approach to the description of turbulent diffusion is discussed at some length.

Fulltext pdf (378 KB)
Fulltext is also available at DOI: 10.1070/PU2003v046n07ABEH001348
PACS: 05.40.−a, 47.27.Qb, 47.53.+n (all)
DOI: 10.1070/PU2003v046n07ABEH001348
URL: https://ufn.ru/en/articles/2003/7/f/
000186470800005
Citation: Bakunin O G "Correlation and percolation properties of turbulent diffusion" Phys. Usp. 46 733–744 (2003)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Бакунин О Г «Корреляционные и перколяционные свойства турбулентной диффузии» УФН 173 757–768 (2003); DOI: 10.3367/UFNr.0173.200307f.0757

References (94) Cited by (13) Similar articles (19) ↓

  1. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systemsPhys. Usp. 51 395–407 (2008)
  2. V.I. Klyatskin “Statistical description of the diffusion of a passive tracer in a random velocity fieldPhys. Usp. 37 501–513 (1994)
  3. A.G. Bershadskii “Large-scale fractal structure in laboratory turbulence, astrophysics, and the oceanSov. Phys. Usp. 33 (12) 1073–1075 (1990)
  4. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  5. G.S. Golitsyn “A N Kolmogorov's 1934 paper is the basis for explaining the statistics of natural phenomena of the macrocosmPhys. Usp. 67 80–90 (2024)
  6. V.L. Ginzburg, L.P. Pitaevskii “Quantum Nyquist formula and the applicability ranges of the Callen-Welton formulaSov. Phys. Usp. 30 168–171 (1987)
  7. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theoremSov. Phys. Usp. 30 134–152 (1987)
  8. V.M. Rozenbaum, I.V. Shapochkina, L.I. Trakhtenberg “Green's function method in the theory of Brownian motorsPhys. Usp. 62 496–509 (2019)
  9. V.I. Klyatskin, K.V. Koshel’ “Simple example of the development of cluster structure of a passive tracer field in random flowsPhys. Usp. 43 717–723 (2000)
  10. G.N. Bochkov, Yu.E. Kuzovlev “Fluctuation-dissipation relations: achievements and misunderstandingsPhys. Usp. 56 590–602 (2013)
  11. V.I. Ritus “Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuumPhys. Usp. 65 468–486 (2022)
  12. S.G. Rautian “The diffusion approximation in the problem of migration of particles in a gasSov. Phys. Usp. 34 (11) 1008–1017 (1991)
  13. V.M. Rozenbaum, I.V. Shapochkina, L.I. Trakhtenberg “Quantum particle in a V-shaped well of arbitrary asymmetry. Brownian motorsPhys. Usp. 67 (10) (2024)
  14. V.Yu. Khomich, V.A. Shmakov “Mechanisms of direct laser nanostructuring of materialsPhys. Usp. 58 455–465 (2015)
  15. V.N. Tsytovich “Description of collective processes and fluctuations in classical and quantum plasmasSov. Phys. Usp. 32 911–932 (1989)
  16. D.S. Agafontsev, E.A. Kuznetsov et alCompressible vortex structures and their role in the onset of hydrodynamic turbulencePhys. Usp. 65 189–208 (2022)
  17. V.V. Shevchenko “Forward and backward waves: three definitions and their interrelation and applicabilityPhys. Usp. 50 287–292 (2007)
  18. N.V. Evdokimov, D.N. Klyshko et alBell’s inequalities and EPR-Bohm correlations: working classical radiofrequency modelPhys. Usp. 39 83–98 (1996)
  19. I.M. Arbekov, S.N. Molotkov “Extraction of quantum randomnessPhys. Usp. 64 617–634 (2021)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions