Issues

 / 

2003

 / 

July

  

Reviews of topical problems


Clustering and diffusion of particles and passive tracer density in random hydrodynamic flows


A M Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, Moscow, 109017, Russian Federation

The diffusion of particles and conservative, passive tracer density fields in random hydrodynamic flows is considered. The crucial feature of this diffusion in a divergent hydrodynamic flow is the clustering of the conservative, passive tracer density field (in the Euler description) and occasionally of the particles themselves (in the Lagrange description) — a coherent phenomenon which occurs with probability unity and should arise in almost all dynamic scenarios of the process. In the present paper, statistical clustering parameters are described in statistical topography terms. Because of their inertial properties, particles and their concentration field can also cluster in random divergence-free velocity fields, the divergence of the particle velocity field itself being a crucial aspect of such a diffusion. The delta-correlated in time velocity field for fluctuating flow (as, e.g., in the Fokker-Planck diffusion equation for low-inertia particles) is in principle an invalid approximation for the statistical description of particle dynamics, and the diffusion approximation accounting for the finite time correlation radius should instead be used for this purpose.

Fulltext pdf (507 KB)
Fulltext is also available at DOI: 10.1070/PU2003v046n07ABEH001600
PACS: 02.50.−r, 05.40.−a, 05.45.−a (all)
DOI: 10.1070/PU2003v046n07ABEH001600
URL: https://ufn.ru/en/articles/2003/7/a/
000186470800001
Citation: Klyatskin V I "Clustering and diffusion of particles and passive tracer density in random hydrodynamic flows" Phys. Usp. 46 667–688 (2003)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кляцкин В И «Кластеризация и диффузия частиц и плотности пассивной примеси в случайных гидродинамических потоках» УФН 173 689–710 (2003); DOI: 10.3367/UFNr.0173.200307a.0689

References (74) Cited by (30) Similar articles (20) ↓

  1. V.I. Klyatskin, D. Gurarie “Coherent phenomena in stochastic dynamical systemsPhys. Usp. 42 165 (1999)
  2. V.I. Klyatskin “Electromagnetic wave propagation in a randomly inhomogeneous medium as a problem in mathematical statistical physicsPhys. Usp. 47 169–186 (2004)
  3. A.S. Mikhailov, I.V. Uporov “Critical phenomena in media with breeding, decay, and diffusionSov. Phys. Usp. 27 695–714 (1984)
  4. V.I. Klyatskin “Integral characteristics: a key to understanding structure formation in stochastic dynamic systemsPhys. Usp. 54 441–464 (2011)
  5. Ya.B. Zel’dovich, S.A. Molchanov et alIntermittency in random mediaSov. Phys. Usp. 30 353–369 (1987)
  6. V.S. Anishchenko, T.E. Vadivasova et alStatistical properties of dynamical chaosPhys. Usp. 48 151–166 (2005)
  7. A. Loskutov “Fascination of chaosPhys. Usp. 53 1257–1280 (2010)
  8. V.V. Uchaikin “Fractional phenomenology of cosmic ray anomalous diffusionPhys. Usp. 56 1074–1119 (2013)
  9. K.V. Koshel, S.V. Prants “Chaotic advection in the oceanPhys. Usp. 49 1151–1178 (2006)
  10. S.I. Vainshtein, Ya.B. Zel’dovich “Origin of Magnetic Fields in Astrophysics (Turbulent ’Dynamo’ Mechanisms)Sov. Phys. Usp. 15 159–172 (1972)
  11. V.I. Klyatskin, V.I. Tatarskii “Diffusive random process approximation in certain nonstationary statistical problems of physicsSov. Phys. Usp. 16 494–511 (1974)
  12. A.B. Medvinskii, S.V. Petrovskii et alSpatio-temporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamicsPhys. Usp. 45 27–57 (2002)
  13. M.V. Kalashnik, M.V. Kurgansky, O.G. Chkhetiani “Baroclinic instability in geophysical fluid dynamicsPhys. Usp. 65 1039–1070 (2022)
  14. V.V. Uchaikin “Self-similar anomalous diffusion and Levy-stable lawsPhys. Usp. 46 821–849 (2003)
  15. A.P. Gerasev “Nonequilibrium thermodynamics of autowave processes in a catalyst bedPhys. Usp. 47 991–1016 (2004)
  16. E.A. Vinogradov, I.A. Dorofeyev “Thermally stimulated electromagnetic fields of solidsPhys. Usp. 52 425–459 (2009)
  17. V.P. Budaev, S.P. Savin, L.M. Zelenyi “Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport featuresPhys. Usp. 54 875–918 (2011)
  18. O.G. Bakunin “Stochastic instability and turbulent transport. Characteristic scales, increments, diffusion coefficientsPhys. Usp. 58 252–285 (2015)
  19. V.K. Vanag “Waves and patterns in reaction-diffusion systems. Belousov-Zhabotinsky reaction in water-in-oil microemulsionsPhys. Usp. 47 923–941 (2004)
  20. Yu.G. Rudoi, A.D. Sukhanov “Thermodynamic fluctuations within the Gibbs and Einstein approachesPhys. Usp. 43 1169–1199 (2000)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions