Issues

 / 

2003

 / 

June

  

Methodological notes


Special features of motion of particles in an electromagnetic wave

,
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The behavior of a charged particle in the field of a monochromatic electromagnetic wave is considered. The motion of a particle is determined not only by the wave field but also by the initial conditions. The trajectories of particles are calculated both by using the exact solution and by employing perturbation theory in the parameter η = eE/(mcω), the ratio of the energy the field transfers to a particle over a wavelength, to the particle’s rest energy. Two kinds of electromagnetic waves, those with coordinate independent amplitudes (uniform waves) and those with coordinate dependent amplitudes (non-uniform waves) are treated. The motion of particles that either are at rest or move with prescribed velocity at the initial time, is investigated. It is shown that a charged particle performs not only an oscillatory motion but also a systematic drift in the field of a wave. In a non-uniform wave, accelerating ponderomotive forces also act on a particle.

Fulltext pdf (250 KB)
Fulltext is also available at DOI: 10.1070/PU2003v046n06ABEH001349
PACS: 03.50.+p, 41.60.Cr, 41.75.−i (all)
DOI: 10.1070/PU2003v046n06ABEH001349
URL: https://ufn.ru/en/articles/2003/6/d/
000185710500004
Citation: Bolotovskii B M, Serov A V "Special features of motion of particles in an electromagnetic wave" Phys. Usp. 46 645–655 (2003)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Болотовский Б М, Серов А В «Особенности движения частиц в электромагнитной волне» УФН 173 667–678 (2003); DOI: 10.3367/UFNr.0173.200306e.0667

References (8) Cited by (20) ↓ Similar articles (20)

  1. Lapshin V B, Skubachevskii A A, Bugaev A S Dokl. Phys. 68 298 (2023)
  2. Arutunian S G, Aginian M A et al Opt. Mem. Neural Networks 32 S415 (2023)
  3. Olikh O, Lytvyn P Semicond. Sci. Technol. 37 075006 (2022)
  4. Perestoronin A V, Karuzskii A L J. Exp. Theor. Phys. 134 1 (2022)
  5. Castillo A J, Milant’ev V P 28 (1) (2021)
  6. Buts V A, Zagorodny A G 39 (2021)
  7. Skubachevskii A A, Lapshin V B, Petrov I B Smart Innovation, Systems And Technologies Vol. Smart Modelling for Engineering SystemsCharged Particles in the Field of an Inhomogeneous Electromagnetic Wave215 Chapter 14 (2021) p. 185
  8. Milenin G V, Redko R A Semicond. Phys. Quantum Electron. And Optoelectron. 23 46 (2020)
  9. Gulyaev Yu V, Bugaev A S et al Uspekhi Fizicheskikh Nauk 190 337 (2020)
  10. Lapshin V B, Skubachevskiy A A et al Dokl. Phys. 64 377 (2019)
  11. Perestoronin A V Jetp Lett. 105 388 (2017)
  12. Essén H, Stén J C-E Eur. J. Phys. 36 055029 (2015)
  13. Milant’ev V P, Castillo A J J. Exp. Theor. Phys. 116 558 (2013)
  14. Komarov V N Tech. Phys. 54 732 (2009)
  15. Musakhanyan V Eur. Phys. J. Spec. Top. 160 311 (2008)
  16. Chikhachev A S, Chulkov V V J. Commun. Technol. Electron. 52 1373 (2007)
  17. Lundin R, Guglielmi A Space Sci Rev 127 1 (2007)
  18. Gazazyan E D, spirian K A et al NATO Science Series II: Mathematics, Physics And Chemistry Vol. Advanced Radiation Sources and ApplicationsFEMTOSECOND DEFLECTION OF ELECTRON BEAMS IN LASER FIELDS AND FEMTOSECOND OSCILLOSCOPES199 Chapter 24 (2006) p. 313
  19. Trott M The Mathematica GuideBook for Numerics Chapter 1 (2006) p. 1
  20. Gazazyan E D, Ispirian K A et al Proceedings of the 2005 Particle Accelerator Conference, (2005) p. 4054

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions