Issues

 / 

2003

 / 

April

  

Methodological notes


Strange attractors in rattleback dynamics

 a,  b
a Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation
b Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034, Russian Federation

This review is dedicated to the dynamics of the rattleback, a phenomenon with curious physical properties that is studied in nonholonomic mechanics. All known analytical results are collected here, and some results of our numerical simulation are presented. In particular, three-dimensional Poincare maps associated with dynamical systems are systematically investigated for the first time. It is shown that the loss of stability of periodic and quasiperiodic solutions, which gives rise to strange attractors, is typical of the three-dimensional maps related to rattleback dynamics. This explains some newly discovered properties of the rattleback related to the transition from regular to chaotic solutions at certain values of the physical parameters.

Text can be downloaded in Russian. English translation is available on IOP Science.
PACS: 05.45.−a, 45.10.−b, 45.40.−f (all)
DOI: 10.1070/PU2003v046n04ABEH001306
URL: https://ufn.ru/en/articles/2003/4/c/
Citation: Borisov A V, Mamaev I S "Strange attractors in rattleback dynamics" Phys. Usp. 46 393–403 (2003)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Борисов А В, Мамаев И С «Странные аттракторы в динамике кельтских камней» УФН 173 407–418 (2003); DOI: 10.3367/UFNr.0173.200304d.0407

References (20) ↓ Cited by (49) Similar articles (15)

  1. Walker J Sci. Am. 241 (10) 144 (1979)
  2. Markeev A P Dinamika Tela, Soprikasayushchegosya s Tverdoi Poverkhnost’yu (Dynamics of a Body Contacting a Rigid Surface, Moscow: Nauka, 1992)
  3. Astapov I S Vestn. Mosk. Gos. Univ. Ser. 1 Mat., Mekh. (2) 97 (1980) [Mosc. Univ. Mech. Bull. 35 59 (1980)]
  4. Karapetyan A V Prikl. Mat. Mekh. 45 (1) 42 (1981) [J. Appl. Math. Mech. 45 30 (1982)]
  5. Karapetyan A V Izv. Akad. Nauk SSSR Mekh. Tverd. Tela (2) 19 (1985)
  6. Markeev A P Prikl. Mat. Mekh. 47 575 (1983) [J. Appl. Math. Mech. 47 473 (1984)]
  7. Lindberg R E, Longman R W Acta Mech. 49 81 (1983)
  8. Borisov A V, Mamaev I S (Eds) Negolonomnye Dinamicheskie Sistemy (Nonholonomic Dynamical Systems, Moscow – Izhevsk: Institut Komp’yuternykh Issledovanii, 2002); http://ics.org.ru/cgi/getfile.cgi?id=22
  9. Kane T R, Levinson D A Int. J. Non-Linear Mech. 17 175 (1982)
  10. Pascal M Prikl. Mat. Mekh. 47 321 (1983)
  11. Kozlov V V Usp. Mekh. 8 (3) 85 (1985)
  12. Karapetyan A V Ustoichivost’ Statsionarnykh Dvizhenii (Stability of Stationary Motions, Moscow: Editorial URSS, 1998)
  13. Borisov A V, Mamaev I S Dinamika Tverdogo Tela (Dynamics of the Rigid Body, Moscow – Izhevsk: RKhD, 2001)
  14. Borisov A V, Mamaev I S Dokl. Ross. Akad. Nauk 387 764 (2002) [Phys. Dokl. 47 892 (2002)]
  15. Borisov A V, Mamaev I S Reg. Chaot. Dyn. 7 177 (2002)
  16. Borisov A V, Mamaev I S, Kilin A A Reg. Chaot. Dyn. 7 201 (2002)
  17. Borisov A V, Mamaev I S, Kilin A A Prikl. Mat. Mekh. (2003, in preparation)
  18. Borisov A V, Mamaev I S, Kilin A A Dokl. Ross. Akad. Nauk 385 338 (2002) [Phys. Dokl. 47 544 (2002)]
  19. Sevryuk M B Reversible Systems (Lecture Notes in Mathematics, 1211, Berlin: Springer-Verlag, 1986)
  20. Broer H, Simó C, Vitolo R, Preprint No. 21 (Barcelona: UB-UPC Dynamical Systems Group, 2001); http://www.maia.ub.es/dsg/2001/index.html

© 1918–2019 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions