Methodological notes

Macroscopic representation of the magnetization vector field in a magnetic substance

Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Expressions for the parameters of the macroscopic magnetization vector field are obtained based on a model of point magnetic moments. It is shown that the magnetization vector field consists of a vortex and a potential part. The form of the obtained expansion depends on the system of units chosen. The magnetic field of the magnetization vector and the electric field of the polarization vector are compared and shown to be equivalent. In relation to the problems discussed, the methodical aspects of teaching an ’Electricity and Magnetism’ section of a physics course are highlighted.

Fulltext is available at IOP
PACS: 01.40.−d, 03.50.De (all)
DOI: 10.1070/PU2003v046n11ABEH001315
Citation: Antonov L I "Macroscopic representation of the magnetization vector field in a magnetic substance" Phys. Usp. 46 1203–1207 (2003)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Антонов Л И «Макроскопическое представление поля вектора намагниченности магнетика» УФН 173 1241–1245 (2003); DOI: 10.3367/UFNr.0173.200311f.1241

References (34) Similar articles (20) ↓

  1. G.N. Gaidukov, A.A. Abramov “An interpretation of the energy conservation law for a point charge moving in a uniform electric field51 163–166 (2008)
  2. A.G. Shalashov, E.D. Gospodchikov “Impedance technique for modeling of electromagnetic wave propagation in anisotropic and gyrotropic media54 145–165 (2011)
  3. N.A. Vinokurov “Analytical mechanics and field theory: derivation of equations from energy conservation57 593–596 (2014)
  4. I.Ya. Brusin “A topological approach to the determination of macroscopic field vectors30 60–63 (1987)
  5. V.P. Kazantsev “An example illustrating the potentiality and peculiarities of a variational approach to electrostatic problems45 325–330 (2002)
  6. V.P. Makarov, A.A. Rukhadze “Force acting on a substance in an electromagnetic field52 937–943 (2009)
  7. B.M. Bolotovskii, A.V. Serov “Features of the transition radiation field52 487–493 (2009)
  8. A.L. Barabanov “Angular momentum in classical electrodynamics36 (11) 1068–1074 (1993)
  9. V.S. Beskin, A.A. Zheltoukhov “On the anomalous torque applied to a rotating magnetized sphere in a vacuum57 799–806 (2014)
  10. I.N. Toptygin, K. Levina “Energy—momentum tensor of the electromagnetic field in dispersive media59 141–152 (2016)
  11. Yu.A. Spirichev “On choosing the energy—momentum tensor in electrodynamics and on the Abraham force61 303–306 (2018)
  12. G.N. Gaidukov, I.N. Gorbatyy “Electromagnetic analogies in electro- and magnetostatics problems62 413–420 (2019)
  13. V.P. Makarov, A.A. Rukhadze “Material equations and Maxwell equations for isotropic media; waves with negative group velocity and negative values of ε (ω) and μ (ω)62 487–495 (2019)
  14. S.G. Arutyunyan “Electromagnetic field lines of a point charge moving arbitrarily in vacuum29 1053–1057 (1986)
  15. A.M. Dykhne, G.L. Yudin “Stimulated effects upon ’jarring’ of an electron in an external electromagnetic field20 80–86 (1977)
  16. A.M. Dykhne, A.A. Snarskii, M.I. Zhenirovskii “Stability and chaos in randomly inhomogeneous two-dimensional media and LC circuits47 821–828 (2004)
  17. L.B. Okun, K.G. Selivanov, V.L. Telegdi “Gravitation, photons, clocks42 1045–1050 (1999)
  18. I.N. Toptygin, G.D. Fleishman “Eigenmode generation by a given current in anisotropic and gyrotropic media51 363–374 (2008)
  19. V.G. Veselago “Energy, linear momentum, and mass transfer by an electromagnetic wave in a negative-refraction medium52 649–654 (2009)
  20. M.V. Davidovich “On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting plate53 595–609 (2010)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions